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Abstract

In this doctoral dissertation, we study three basic problems in machine learning and two

new hypothesis spaces with corresponding learning algorithms. The problems we investigate

are: accuracy estimation, feature subset selection, and parameter tuning. The latter two

problems are related and are studied under the wrapper approach. The hypothesis spaces we

investigate are: decision tables with a default majority rule (DTMs) and oblivious read-once

decision graphs (OODGs).

For accuracy estimation, we investigate cross-validation and the .632 bootstrap. We

show examples where they fail and conduct a large scale study comparing them. We con-

clude that repeated runs of �ve-fold cross-validation give a good tradeo� between bias and

variance for the problem of model selection used in later chapters.

We de�ne the wrapper approach and use it for feature subset selection and parameter

tuning. We relate de�nitions of feature relevancy to the set of optimal features, which is

de�ned with respect to both a concept and an induction algorithm. The wrapper approach

requires a search space, operators, a search engine, and an evaluation function. We inves-

tigate all of them in detail and introduce compound operators for feature subset selection.

Finally, we abstract the search problem into search with probabilistic estimates.

We introduce decision tables with a default majority rule (DTMs) to test the conjecture

that feature subset selection is a very powerful bias. The accuracy of induced DTMs is

surprisingly powerful, and we concluded that this bias is extremely important for many

real-world datasets. We show that the resulting decision tables are very small and can be

succinctly displayed.

We study properties of oblivious read-once decision graphs (OODGs) and show that they

do not su�er from some inherent limitations of decision trees. We describe a a general frame-

work for constructing OODGs bottom-up and specialize it using the wrapper approach. We

show that the graphs produced are use less features than C4.5, the state-of-the-art decision

tree induction algorithm, and are usually easier for humans to comprehend.
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Chapter 1

Introduction

O Lord, I could have stayed here all the night
To hear good counsel. O, what learning is!

|William Shakespeare in Romeo and Juliet

This chapter provides an introduction to supervised classi�cation learning and an overview

of the dissertation. This introduction will be mostly informal, and the formal de�nitions will

follow in Chapter 2. In Section 1.1, we de�ne supervised classi�cation learning and relate

it to the bigger �eld of machine learning. In Section 1.2, we motivate the problem with

which we are dealing. In Section 1.3, we discuss the importance of bias, or priors, which

make learning possible. In Section 1.4, we describe the organization of the dissertation and

major contributions. We conclude with a summary in Section 1.5.

1.1 Supervised Classi�cation Learning

Without learning, men grow as cows do
increasing only in esh not wisdom.

|Sakyamuni Buddha

Simon (1983) de�ned learning as \changes in the system that are adaptive in the sense

that they enable the system to do the same task or tasks drawn from the same population

more e�ciently and more e�ectively the next time." This de�nition is overly broad for our

needs; therefore, we will narrow it down to inductive learning, or empirical learning.

1



CHAPTER 1. INTRODUCTION 2

Skill acquisition
or

Speedup learning
or

Empirical learning

Inductive learning

Learning

Unsupervised learning

                 or
Discovery

RegressionClassification

Supervised learning

Figure 1.1: The learning hierarchy. Shaded nodes lead to supervised classi�cation learning,
the topic of this dissertation.

Empirical learning is \accomplished by reasoning from externally supplied examples

to produce general rules" (Dietterich & Shavlik 1990, p. 1). In the inductive learning

domain, we work on supervised classi�cation learning problems. Figure 1.1 shows the

learning hierarchy just described and related areas.

In supervised classi�cation learning, the induction algorithm is given a set of ex-

amples, called a training set, in which each instance consists of a list of feature values and

a discrete label. The list of feature values alone is called an unlabeled instance. The task

of the algorithm is to learn a rule that correctly classi�es new unlabelled instances. The

term \supervised" suggests that some process, sometimes called the teacher, has labelled

the instances in the training set. The term \classi�cation" denotes the fact that the label

is discrete, i.e., consists of a few values.
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Example 1.1 (A medical supervised learning problem)

Suppose we are trying to learn a rule for predicting whether a patient has a heart disease.

We could �nd past records of patients, each record consisting of features such as age (in-

teger), sex (male or female), cholesterol level (real number), presence of exercise induced

angina (true or false).

Each record is presumed to be labelled by expert doctors, and the set of records is given

to our induction algorithm as input. The output of the induction algorithm will be some rule

to classify new patients. Figure 1.2 shows a portion of a decision tree that was induced from

real-word data. The decision tree serves as our rule for classifying new patients: starting

from the root, we repeatedly branch according to the feature tested until a leaf is reached,

which labels the patient as sick or healthy.

There are many classi�ers that one can induce from data in the framework of supervised

classi�cation learning. In this dissertation, we will concentrate on induction algorithms

that contribute to understanding the data as opposed to classi�ers that aim only for high

accuracy. For example, an induced decision tree might help doctors understand the data

better, while a neural-network that has the same classi�cation accuracy may be extremely

hard for humans to understand. Induction algorithms that induce comprehensible structures

aid in understanding the domain and may constitute new knowledge (Dietterich 1986, Newell

1982).

As shown in Figure 1.1, supervised classi�cation learning is a small subset of the machine

learning �eld. Speedup learning, exempli�ed by Explanation-Based Learning (Mitchell,

Keller & Kedar-Cabelli 1986), deals with exploiting knowledge to speed up the e�ciency of

existing processes (e.g., introduction of macro operators and metalevel control knowledge).

Unsupervised learning, exempli�ed by clustering methods (Duda & Hart 1973, Krish-

naiah & Kanal 1982, Cheeseman et al. 1988), deals with discovering structure in unlabelled

instances. Regression problems deal with learning a function mapping from unlabelled

instances to a real-valued label (Breiman, Friedman, Olshen & Stone 1984, Draper & Smith

1981).

1.2 Motivation

The three most important motivating factors for supervised classi�cation learning are: data

mining, overcoming the knowledge acquisition bottleneck, and improving upon expert per-

formance.
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Figure 1.2: A portion of a decision tree induced by C4.5 for the Cleveland heart disease
dataset (described later).
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1.2.1 Data Mining

An ounce of knowledge is worth a ton of data.
|Brian R. Gaines, 1989

An ounce of gold may cost more to dig up than a ton of coal.
|Australian mining industry metaphor, in Catlett (1991a)

Data mining, or exploratory data analysis as it is sometimes called in Statistics, deals

with the extraction of knowledge from data. Fayyad, Piatetsky-Shapiro & Smyth (to ap-

pear) de�ne data mining as the \non-trivial process of identifying valid, novel, potentially

useful, and ultimately understandable patterns in data."

The amount of data collected grows faster as storage technologies and data collection

methods improve. Fayyad et al. (to appear) give some examples of massive datasets created

recently:

1. Wal-Mart, a U.S. retailer, created a database that handles over 20 million transactions

a day (Babcock 1994).

2. Mobil Oil Corporation, is developing a data warehouse capable of storing over 100

terabytes of data related to oil exploration (Harrison 1993).

3. The NASA Earth Observing System (EOS) of orbiting satellites and other spaceborne

instruments is projected to generate on the order of 50 gigabytes of remotely sensed

image data per hour when operational in the late 1990s and into the next century

(Way & Smith 1991).

4. The sky catalog from the Palomar Observatory survey contains billions of entries

with raw image data sizes measured in terabytes. Fayyad, Weir & Djorgovski (1993)

describe the SKICAT project, which uses a decision tree to classify the objects from

the sky survey into stars, galaxies, or instrumental artifacts.

The ability to extract interesting information and understand the data is of vital impor-

tance. The �eld of data mining is now growing rapidly with the increased need for smart

data warehouses.
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1.2.2 Knowledge Acquisition Bottleneck

For knowledge itself is power.
|Francis Bacon (1561-1626)

Expert systems (Feigenbaum, McCorduck & Nii 1988, Buchanan & Smith 1988) solve prob-

lems that are normally solved by human experts. To solve expert-level problems, expert

systems need to build a large knowledge base, a task usually assigned to a knowledge

engineer. Building the knowledge base is considered the bottleneck for building an expert

system, and Feigenbaum (1977) described the knowledge engineer's task as to \uncover

private knowledge by careful, painstaking analysis of a second party."

One motivation for research in machine learning, especially supervised classi�cation

learning, is to cut the knowledge acquisition time drastically. Michie (1987) wrote that in

standard expert system construction a \knowledge engineer's object is to convert human

know-how into say-how. . . [and by programming] into machine representation of the know-

how." The way to cut the knowledge acquisition time is to bypass the narrow channel

involving the knowledge engineer by using examples from the world or tutorial examples

constructed by an expert (show-how).

Muggleton (1990) described some expert systems and the di�erence in man-years in-

volved in constructing them. MYCIN (a medical diagnosis expert system) and XCON (a

VAX computer con�gurator), had 400 and 8,000 rules, respectively, and were constructed

by hand, i.e., using knowledge engineers. GASOIL (an expert system for Hydrocarbon

separation and con�guration) and BMT (an expert system for con�guring of �re-protection

equipment in buildings) had 2,800 rules and 30,000 rules, respectively, and were constructed

using ID3 (Quinlan 1986), a decision tree induction algorithm. The time to construct

MYCIN and XCON was estimated to be an order of magnitude greater than BMT, which

Muggleton claimed is the largest expert system in full-time commercial use.

Of course, induction cannot replace experts. Experts are important for constructing

the appropriate set of features and for constraining the search space. Describing an expert,

Michie (1987) wrote that \she has no trouble in knowing what low-level measurements

[features] are relevant, although she commonly attributes relevance to additional measure-

ments which later may be shown to be redundant." Gaines (1991) quanti�ed the tradeo�

in prior knowledge about relevant features. Clark & Matwin (1993) showed a similar use of

background knowledge found in qualitative models.
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An important requirement in expert systems, which is not necessary for many learning

tasks, is the ability to explain the classi�cations. Michie (1987) wrote that \A system which

gives good decisions but cannot explain itself in terms to which the human expert can relate

may be a software product of great value, but it belongs to some other category: operations

research, decision support systems, automatic control, and so on."

1.2.3 Improving Upon Expert Performance

Kononenko (1993) references 24 papers where inductive learning systems were actually ap-

plied in medical domains, such as oncology, liver pathology, prognosis of patient survival

in hepatitis, urology, diagnosis of thyroid diseases, rheumatology, diagnosing craniostenosis

syndrome, dermatoglyptic diagnosis, cardiology, neuropsychology, gynecology, and peri-

natology. He remarks that \typically, automatically generated diagnostic rules slightly

outperformed the diagnostic accuracy of physicians specialists."

Fayyad et al. (1993) report that their decision tree outperformed astronomers in the

sky survey and that for the majority of these objects, the astronomers were not able to

determine the classes by examining the survey images.

1.3 The Need for Bias in Machine Learning

The Knowledge Principle: A system exhibits intelligent understanding and
action at a high level of competence primarily because of the speci�c knowledge
that it contains about its domain of endeavor. . . If a program is to perform well,

it must know a great deal about the \world" in which it operates.
|Feigenbaum (1988)

In order to generalize one must make assumptions, which are called biases in machine

learning (not to be confused with statistical bias, which is explained later). Mitchell (1982)

wrote:

Although removing all biases from a generalization system may seem to be a

desirable goal, in fact the result is nearly useless. An unbiased learning system's

ability to classify new instances is no better than if it simply stored all the

training instances and performed a lookup when asked to classify a subsequent

instance. . . . An unbiased system is one whose inferences logically follow from

the training instances, whereas classi�cations of new instances do not logically

follow from the classi�cations of the training instances.
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Interesting conclusions that follow the general statement above were made by Scha�er

(1994). Assuming all targets are equiprobable in a discrete domain with two possible classes,

and measuring the generalization accuracy, which is the probability of making a correct

prediction on unseen instances, the following observations were made:

1. A majority induction algorithm, that always guesses the prevalent class in the training

set, will have a generalization accuracy of exactly 50%.

The intuition that the majority induction algorithm will detect a di�erence when the

prevalences are di�erent is correct; however, when the classes are equally likely, the

algorithm will perform slightly below 50% because a majority in the training set will

imply a minority in the test set!

2. Learning curves using generalization accuracy (i.e., a plot of the generalization ac-

curacy as a function of the number of instances) must sometimes decrease with the

number of instances.

3. The superiority (in terms of generalization accuracy) of one induction algorithm over

another in some situations must be balanced exactly by the superiority of the latter

algorithm over the former.

4. Cross validation, data diagnostic, and meta-level learning cannot overcome the above

limitations.

One unrealistic assumption made by Scha�er is that all target concepts are equiprobable.

Wolpert (1994b) presents the no-free-lunch theorems, which are more general than Scha�er's

conservation law. The main theorem states that how well an induction algorithm does is

determined by how \aligned" the learning algorithm is with the posterior probability of a

target function given the data. More formally, an induction algorithm can be theoretically

described as Pr(h j D), a probability distribution of hypotheses generated given training

sets. If Pr(f j D) is the probability of a given target function f given a training set D,
then the generalization accuracy is

X
h;f

u(h; f;D) Pr(h j D) Pr(f j D)

for a utility function u. If the probability assigned to a hypothesis h given a dataset D is

high (or one for deterministic induction algorithms) and the probability that this function
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was indeed the generating function, then for zero/one-utility (u(h; f;D) = 1 if h = f and

zero otherwise) the accuracy will be high.

The no-free-lunch theorems formalize the principle that knowledge facilitates learning,

de�ned in (Lenat & Feigenbaum 1991) as \if you don't know very much to begin with,

don't expect to learn a lot quickly." The question of interest to researchers in machine

learning is how to de�ne the biases of existing algorithms and how to �nd out when a given

bias is appropriate, based on background knowledge. Biases can be divided into two types:

restricted hypothesis space bias and preference bias.

Restricted hypothesis space bias This bias assumes that the target function belongs to

some restricted space of hypotheses, typically de�ned in terms of their representation.

For example, the perceptron algorithm searches only the space of linear threshold

functions.

Preference bias This bias places a preference ordering on hypotheses. Many times the

preference ordering is de�ned by how the search through the space of hypotheses

is conducted. Most preference biases attempt to minimize some measure of syntac-

tic complexity, following Occam's Razor principle of preferring simpler hypotheses

(Blumer, Ehrenfeucht, Haussler & Warmuth 1987).

Most decision tree induction algorithms restrict the hypothesis space to the space of

�nite trees that conduct threshold splits on continuous features and equality or subset

splits on discrete features. Decision tree induction algorithms generally employ a simplicity

bias, preferring small decision trees over large ones.

Making threshold splits on continuous features is one example of a bias that is used by

many induction algorithms. Our prior experience with the real world indicates that behavior

is smooth in many cases. For example, if the number of times a woman was pregnant is

relevant to whether she is likely to have diabetes, we would not expect the target to depend

on whether the number is even or odd, but rather whether it is high or low. Similarly, if

the temperature of a patient is relevant to whether he or she has some disease, we would

expect smoothness in the sense that patients with very close temperatures should behave

similarly if all other factors remain constant.

A bias that we investigate in a large part of this dissertation is the bias for a small

number of features to base our classi�cation on. Given an instance with many features, we

will assume that it unlikely that all features are necessary. In many cases, our background
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knowledge indicates that this is a good bias. For example, most people would agree that not

all �elds (features) in a patient record are relevant for predicting heart disease; speci�cally,

the patient number is most likely irrelevant.

1.4 Organization and Contributions

This dissertation can be divided into three main sections: accuracy estimation, wrappers,

and OODGs. We now describe the organization of the dissertation and then describe the

motivation for the work on this areas, which was almost in the opposite order to the way it

is presented now.

1.4.1 Organization

No amount of organization can counteract determined laziness.
|Chris Hansen

In Chapter 2, we formalize supervised classi�cation learning and the terms used through-

out the dissertation. We describe common induction algorithms and explain the choice of

datasets we made. We briey describe the bias-variance tradeo� and conclude the chapter

with a description of the experimental methodology used. Appendix F contains a table of

symbols and notations.

In Chapter 3, we review accuracy estimation methods, and experimentally compare

cross-validation and the .632 bootstrap. Accuracy estimation is a crucial part of the wrapper

approach, and we attempt to stabilize the highly variable estimates of cross-validation.

In Chapter 4, we describe the wrapper approach, which is based on the simple idea of

optimizing parameters based on the estimated accuracy of the classi�er. We investigate the

problem of feature subset selection, i.e., hiding some features from the induction algorithm

to improve its accuracy, and de�ne our goal of an optimal feature subset. We discuss

relevance and show that, while related to the optimal feature subset, one should not always

select all relevant features. We test di�erent search engines to search the space of feature

subsets and introduce compound operators to speed the search. We conclude with an

example of how the wrapper approach can be used to tune parameters for C4.5 (Quinlan

1993) and improve its performance on arti�cial and real-world problems.

In Chapter 5, we evaluate the power of feature subset selection as the only inductive

process in an inducer. We use a structure called DTM, which is a decision table with a
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default majority rule, to test the hypothesis that there is a lot of generalization power

in simply selecting a subset of features and matching their values in queries. The DTM

structure can be updated easily, and we can incrementally cross-validate it, thereby reducing

the running time of the accuracy estimation step of the wrapper approach. We conclude

that much of the inductive power indeed comes from feature subset selection, and that

for the datasets tested, a small subset of features has high predictive power. Appendix B

shows General Logic Diagrams (Michalski 1978), which are two dimensional projections of

the projected space, for the target concepts.

In Chapter 6, we describe OODGs, oblivious read-once decision graphs, and show that

such graph structures have some advantages over decision-trees. We show a basic framework

for learning OODGs bottom-up and discuss the strengths and limitations of our approach.

We conclude by combining the basic algorithm with the wrapper approach and show that

the resulting graphs are accurate for the datasets we tested, and in many cases very compre-

hensible. Appendix D shows trees generated by C4.5 and graphs generated by our HOODG

algorithm.

Chapters 3 to 6 each include a section on future work and a summary section. We

conclude with a summary in Chapter 7. Appendix E contains a global comparison of all

induction algorithms used and many others. An index can be found at the end of the

dissertation.

1.4.2 A Brief History

If at �rst you don't succeed, you are running about average.
|M. H. Alderson

Figure 1.3 shows the chronological development of the topics, with the chapters they are

discussed in shown in small circles at the top of each node in the graph.

In May 1993, the idea of Oblivious Decision Graphs emerged with the name \Kite

Pipeline: a Structure for Representing Discrete Functions" (Kohavi, draft paper). A few

months later, after we understood the topic much better, it was clear that Lee (1959) had

already thought of this idea and that there is a whole community|the OBDD community|

that works with isomorphic structures. Learning the structures was still uninvestigated.

In Kohavi (1994a), the bottom-up algorithm was described. In Kohavi (1994b) the

limitations began to emerge, with an understanding that feature subset selection must be

done.
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Figure 1.3: The chronological ow of topics. The small circles at the top of each node
indicate the chapters of this dissertation in which they appear.

In John, Kohavi & Peger (1994) the wrapper approach was introduced as a method

for feature subset selection that will work with any induction algorithm. For about a year

most of the e�ort was concentrated on the problem of feature subset selection (Kohavi

1994c, Kohavi & Sommer�eld 1995a). The results on feature subset selection using the

wrapper approach were generalized into general optimization of parameters (Kohavi & John

1995) and specialized into subset selection for decision tables (Kohavi 1995a).

Rough sets were related to decision tables and to OODGs (Kohavi & Frasca 1994, Kohavi

1994d). The work with the wrapper approach led to a large experiment to see which accuracy

estimation method should be used (Kohavi 1995b).

Recently, work on OODGs resumed with an experimental comparison of discretization

methods to allow experiments on real datasets (Dougherty, Kohavi & Sahami 1995), and a

top-down induction algorithm (Kohavi & Li 1995). Chapter 6 combines most of the work
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done by Kohavi in the last two years: an entropy discretization is used to discretize the

data, the top-down algorithm �nds a good initial subset, and the wrapper searches for a

better node using the original HOODG algorithm for inducing OODGs as a black box.

1.4.3 Principal Contributions

Jones's First Law: Anyone who makes a signi�cant contribution to any �eld of
endeavor, and stays in that �eld long enough, becomes an obstruction to its

progress|in direct proportion to the importance of their original contribution.
|Unix fortune

The following is a list of contributions to the �eld of machine learning made in this

dissertation:

1. The use of OODGs as a hypothesis space and the introduction of the bottom-up

algorithm.

2. The use of DTMs (decision tables with default majority) as a hypothesis space showing

the surprising power of feature subset selection.

3. The wrapper approach and its usage in feature subset selection and parameter tuning.

4. Compound operators for feature subset selection.

5. The large experiment comparing cross-validation variants and bootstrap. The con-

clusion that leave-one-out is not the best cross-validation method for model selection.

The realization that the .632 bootstrap is highly biased for real-world datasets and

common induction algorithms (this motivated the introduction of the .632+ method

by Efron and Tibshirani).

6. The de�nitions of relevance and irrelevance for features, and their relation to the

optimal feature subset.

7. The properties of OODGs including the Kite Theorem, Neighbor Exchange Theorem,

and the Adjacency Theorem.

8. The introduction of an initial feature subset node for OODGs based on conditional

entropy.

9. The proof that a multi-level projection for OODGs is NP-hard.
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1.5 Summary

I have been over into the future, and it works.
|Lincoln Ste�ens (1866-1936)

Learning without bias is impossible. To make machine learning work, we must inves-

tigate di�erent structures that may be appropriate for di�erent contexts and understand

their strengths and limitations.

Machine learning works in many practical applications because the target concepts are

not equiprobable as assumed in Scha�er (1994) and because our algorithms are somewhat

\aligned" with real world phenomena: features are usually selected by experts and smooth-

ness assumptions that algorithms assume do hold in many cases.

The more we understand about the underlying structures used in classi�ers (e.g., decision

trees, graphs), the more we can modify them based on background knowledge. Similarly,

the more we understand the induction algorithms and their assumptions, the easier it is to

modify them.



Chapter 2

Supervised Classi�cation Learning:

De�nitions and Methodology

If your thesis is utterly vacuous
Use �rst-order predicate calculus.

With su�cient formality
The sheerest banality

Will be hailed by the critics: \Miraculous!"
|Henry A. Kautz, in Brachman (1987)

We begin by formalizing the supervised classi�cation learning problem and the terms used

throughout the dissertation. We describe common learning algorithms that are used in

this dissertation, and explain the choice of datasets we made. We briey describe the

bias-variance tradeo� and conclude the chapter with a description of the experimental

methodology used. Readers not familiar with machine learning might wish to consult an

introductory text on machine learning, such as Langley (1995) orWeiss & Kulikowski (1991).

An excellent collection of papers in machine learning can be found in Dietterich & Shavlik

(1990).

15
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2.1 De�nitions

The beginning of wisdom is the de�nition of terms.
|Socrates (469-399 B.C.)

Informally, the task of a supervised classi�cation learning program is to generate a \good"

classi�er from a labelled set of examples. The classi�er can then be used to classify unla-

belled examples with the goal of correctly predicting the label of each unlabelled example.

The classi�er can be evaluated for accuracy, comprehensibility, compactness, and other

desirable properties that determine how good and appropriate it is for the task at hand.

An instance, sometimes called an example, is a �xed list of features values. An

instance describes the basic entity that we are dealing with, such as a person, a mushroom,

a board position in a chess game, or a DNA sequence.

A feature, sometimes called an attribute, describes some characteristic of an instance.

We use two features types: nominal (color 2fred,green,blueg) and continuous (height2 R,
a real number). Continuous features are used whenever there is a linear ordering on the

values, even if they are not truly continuous (e.g., height may be speci�ed to the nearest

inch or centimeter).

Every instance has a special nominal feature, the label, which describes the phenomenon

of interest, i.e., the phenomenon we would like to learn and make predictions about. An

unlabelled instance is the part of the instance without the label, i.e., the list of feature

values. A dataset is a set of labelled instances. Table 2.1 shows a dataset with seven

instances from a heart-disease domain. The last column, sick, is what we try to predict

given the other features.

A classi�er is a function that maps an unlabelled instance to a label. All classi�ers use

a stored data structures that is then interpreted as a mapping for an unlabelled instances

to a label. For example, a decision tree classi�er contains a stored decision tree that maps

an unlabelled instance to a category by following the path from the root to a leaf (de�ned

by the tests at the nodes) and returns the category at the leaf; a one nearest-neighbor (see

below) classi�er �nds the nearest-neighbor in a set of internally stored labelled instances

and returns its label. Throughout this dissertation, we will consider only deterministic

classi�ers, but the de�nition can be extended to nondeterministic classi�ers as well; note

also that in most cases, it is the induction algorithm that is nondeterministic, not the

classi�er.
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Table 2.1: A dataset of seven instances from a heart-disease domain. The �rst line describes
the feature names, the second line the feature types (continuous or nominal), and the other
seven lines the instances, each described by a list of �ve feature values and a label value.

Age Sex cholesterol resting ECG max heart rate sick
(cont) fM;F g (cont) fnorm; abn; hypg (cont) fyes; nog
53 M 203 hyp 155 yes
60 M 185 hyp 155 yes
40 M 199 norm 178 no
46 F 243 norm 144 no
62 F 294 norm 162 no
43 M 177 hyp 120 yes
76 F 197 abn 116 no
62 M 267 norm 99 yes
57 M 274 norm 88 yes

An inducer, or an induction algorithm, builds a classi�er from a given dataset.

CART (Breiman et al. 1984) and C4.5 (Quinlan 1993) are decision tree inducers that build

decision tree classi�ers.

We now formally de�ne the symbols used. Appendix F contains a summary of these

symbols. Let the domain of feature Xi be Dom(Xi). Each unlabelled instance is an element

of the unlabelled instance space X = Dom(X1)�Dom(X2)�� � ��Dom(Xn), where n is the

number of features. We denote an unlabelled instance by ~X and its value (feature vector)

by ~x. The value of a speci�c feature Xi is denoted by xi.

Let Y be the set of possible label values. The label is denoted by Y and the label value

is denoted by y. Let X �Y be the space of labelled instances and D be a dataset (possibly

a multiset) consisting of m labelled instances, where each instance i is h~xi 2 X ; yi 2 Yi.
A classi�er C maps an unlabelled instance ~x 2 X to a label y 2 Y and an inducer

I maps a given dataset D into a classi�er C. The notation I(D; ~x) will denote the label

assigned to an unlabelled instance ~x by the classi�er built by inducer I on dataset D, i.e.,
I(D; ~x) = C(~x) = (I(D))(~x). We assume that there exists a distribution D on the set

of labelled instances and that our dataset consists of i.i.d. (independently and identically

distributed) instances.

The accuracy of a classi�er C is the probability of correctly classifying a randomly

selected instance, i.e., acc = Pr(C(~x) = y) for a randomly selected instance h~x; yi 2 X �Y ,
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where the probability distribution over the instance space is the same as the distribution

that was used to select instances for the inducer's training set. Note that the desired goal is

to estimate the accuracy of the classi�er induced from the given dataset, not the expected

accuracy of a classi�er induced from a dataset of the same size randomly drawn from the

parent population. The former is termed conditional accuracy, while the latter is termed

expected accuracy.

The task of an induction algorithm is to induce a classi�er that has the following desired

features:

1. It is accurate. This requirement is usually the most important feature, and it will be

the main consideration in this dissertation.

2. It is comprehensible to humans. Given two classi�ers with approximately equal ac-

curacy, we might prefer the one that is also comprehensible. For some domains, such

as medical domains, comprehensibility is crucial; for others, such as hand-written

recognition, it is of no importance. In this dissertation, we give comprehensibility an

important weight.

3. It is compact. While related to comprehensibility, one does not imply the other. A

perceptron (see below) might be a compact classi�er, yet given an instance, it may

be hard to understand the labelling process. Alternatively, a decision table (Kohavi

1995a) (also see Chapter 5 on page 130) may be very large, yet labelling each instance

is trivial: simply look it up in the table.

Michie (1987) reported that when ID3's output on the chess domain was shown to a

domain expert, i.e., a chess master, it was completely opaque. Although it was very

accurate, the tree was large, obscure, and the chess master was in a \total blackout."

The phenomenon was con�rmed for related chess material in Shapiro & Niblett (1982)

and similar claims about other domains were made by Cendrowska (1987).

Some researchers, and most of the Statistics community, use error rates (one minus the

accuracy) instead of accuracy.1 We chose to use accuracy because it is the more common

1Jerry Friedman says that computer scientists are more optimistic than statisticians because we use
accuracy and not error rates; Von Neuman's sampling method is called \acceptance sampling" in the Com-
puter Science literature and \rejection sampling" in the Statistics literature. Although both measures are
clearly equivalent in theory, the problem of which measure to use is ubiquitous. In the supermarkets, some
companies write that their product is 96% fat free, yet others write that it has 4% fat.
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measure in the machine learning community, but we do use error rates when the advantages

are clear. Speci�cally, the relative reduction in error between algorithmA and algorithm

B (which has higher accuracy) is (acc(B) � acc(A))=(1� acc(A)). If algorithm A has an

accuracy of 98% and algorithm B has an accuracy of 99%, then the relative reduction in

error is 50%. Although this measure is sometimes more appropriate than absolute di�erence

in accuracy, improving from 80% to 82% may be harder than from 96% to 98% because in

the former case, the best possible accuracy might be 82%, while in the latter case it may be

100%. All arti�cial datasets used in this dissertation are deterministic concepts, and thus

it is possible to achieve 100% accuracy on them all; for real datasets, the highest possible

accuracy is unknown, but it is probably not 100% in most domains.

The above de�nitions can be extended in many ways, and most of the work presented in

this dissertation can easily be generalized in several ways. For example, we consider equal

misclassi�cation costs using a 0/1 loss function, but the accuracy estimation techniques

(Chapter 3 on page 35) and the wrapper approach (Chapter 4 on page 76) trivially extend

to other loss functions. The features can be extended to other types, such as linear (but

not continuous) and tree-structured (Haussler 1988), but this issue is orthogonal to this

dissertation; algorithms that support these types could be used with methods described

here. We assume a at-�le format, where the instances contain a �xed number of features.

Inductive logic programming (ILP) techniques (Lavrac & Dzeroski 1994, Lavrac & Dzeroski

1994) can deal with variable formats, and techniques described here could conceivably be

used in ILP, although they have not been tried.

2.2 Induction Algorithms

Following the middle ages, the origin of this word [algorithm] was in doubt, and
early linguists attempted to guess at its derivation by making combinations like

algiros (painful) + arithmos (number).
|Knuth, The Art of Computer Programming (1973)

Throughout this dissertation, we use two induction algorithms as a basis for comparisons.

These are the C4.5 induction algorithms and the Naive-Bayes induction algorithm. Both

are well known in the machine learning community and represent two completely di�erent

approaches to learning, hence we hope that our results are of a general nature and will

generalize to other induction algorithms. Decision trees have been well documented in
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Quinlan (1993), Breiman et al. (1984), Fayyad (1991), Buntine (1992), and Moret (1982);

hence we will not describe them in detail. The Naive-Bayes algorithm is explained below.

The speci�c details are not essential for the rest of the dissertation.

The C4.5 algorithm (Quinlan 1993) is a descendent of ID3 (Quinlan 1986), which builds

decision trees top-down and prunes them. The tree is constructed by �nding the best single-

feature test to conduct at the root node of the tree. After the test is chosen, the instances

are split according to the test, and the subproblems are solved recursively. C4.5 uses gain

ratio, a variant of mutual information, as the feature selection measure; other measures

have been proposed, such as the Gini index (Breiman et al. 1984), C-separators (Fayyad &

Irani 1992), distance-based measures (De M�antaras 1991), and Relief (Kononenko 1995b).

C4.5 prunes by using the upper bound of a con�dence interval on the resubstitution error as

the error estimate; since nodes with fewer instances have a wider con�dence interval, they

are removed if the di�erence in error between them and their parents is not signi�cant.

We reserve the term ID3 to a run of C4.5 that does not execute the pruning step and

builds the full tree (i.e., nodes are split unless they are pure or it is impossible to further

split the node due to conicting instances). The ID3 induction algorithm we used is really

C4.5 with the parameters -m1 -c100 that cause a full tree to be grown and only prune if

there is absolutely no increase in the resubstitution error rate. A relatively unknown post

processing step in C4.5 replaces a node by one of its children if the accuracy of the child

is considered better (Quinlan 1993, page 39). In one case (the corral database described

below), this had a signi�cant impact on the resulting tree: although the root split was

incorrect, it was replaced by one of the children.

CART (Breiman et al. 1984) also builds decision trees top-down and prunes them, but

the pruning mechanism is drastically di�erent. Pruning in CART is done using ten-fold

strati�ed cross-validation, and hence the algorithm runs an order of magnitude slower.

Esposito, Malerba & Semeraro (1995a, 1995b) compared six di�erent pruning methods on

UC Irvine datasets and concluded that there is no signi�cant di�erence in accuracy between

C4.5's pruning and CART's pruning (in fact, C4.5 was slightly superior). Mehta, Rissanen

& Agrawal (1995) have recently observed similar results, but noted that the trees generated

by the CART-like algorithm were much smaller.

The Naive-Bayesian classi�er (Langley, Iba & Thompson 1992, Duda & Hart 1973,

Good 1965, Anderson & Matessa 1992, Taylor, Michie & Spiegalhalter 1994) uses Bayes

rule to compute the probability of each class given the instance, assuming the features are
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conditionally independent given the label. Formally,

Pr(Y = y j ~X = ~x) by Bayes rule

= Pr( ~X = ~x j Y = y) � Pr(Y = y)=Pr(~x) P (~x) is same for all label

values.

/ Pr(X1 = x1; : : : ; Xn = xn j Y = y) � Pr(Y = y) by independence

=
nY
i=1

Pr(Xi = xi j Y = y) � Pr(Y = y) :

The version of Naive-Bayes we use in our experiments was implemented in MLC++
(Kohavi et al. 1994). The probabilities for nominal features are estimated from data. The

probabilities for continuous features are assumed to be coming from a Gaussian distribution,

and we estimate the mean and standard deviation from the data. Unknown values in a test

instance (an instance that needs to be labelled) are ignored, i.e., they do not participate

in the product. In case of zero occurrences for a label value and a feature value, we use

the :5=m as the probability, where m is the number of instances. Other approaches are

possible, such as using Laplace's law of succession or using a beta prior (Good 1965, Cestnik

1990). In these approaches, the probability for n successes after N trials is estimated at

(n + a)=(N + a + b), where a and b are the parameters of the beta function. The most

common choice is to set a and b to one, and estimating the probability as (n+ 1)=(N + 2),

which is Laplace's law of succession.

The Gaussian assumption for continuous features is unrealistic in many cases. In

some parts of the thesis, especially when making comparisons between algorithms, we pre-

discretize the data using a mutual information discretization procedure. Section 2.3 on the

next page describes the discretization procedure in detail.

While decision trees are considered to be very comprehensible classi�ers, Naive-Bayes

is simple enough that people can easily understand its mapping, especially when log prob-

abilities are used. Kononenko (1993) reports that physicians naturally interpreted the log

probabilities of Naive-Bayes as an additive scoring function and found the explanation abil-

ity to be very natural. The overall impression was that the form of explanation typically

replicates their way of diagnosing, i.e., summation of evidence for/against the diagnosis.

The physicians also considered certain paths in the decision tree as new information that is

interesting and warrants further investigation.
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Throughout the thesis, we will mention some other induction algorithms. A Nearest-

neighbor, or an instance-based algorithm classi�es an instance-based on a vote of the k

nearest neighbors under some distance metric (Dasarathy 1990, Wettschereck 1994, Duda &

Hart 1973, Devijver & Kittler 1982, Aha, Kibler & Albert 1991). A perceptron, sometimes

called a neuron, is a classi�er that is usually associated with the perceptron error correcting

rule (Rosenblatt 1958, Nilsson 1990, Minsky & Papert 1988). Multi-layer network of per-

ceptrons are called neural networks and are usually associated with the backpropagation

rule for learning (Rumelhart, Hinton & Williams 1986, Hertz, Krogh & Palmer 1991).

A Bayes rule, or a Bayes classi�er, is a rule that predicts the most probable class for

a given instance, based on the full distribution D (assumed to be known). The accuracy of

the Bayes rule is the highest possible accuracy, and it is mostly of theoretical interest, as in

practice we do not know the distribution D.

2.3 Discretization

Statisticians do it continuously but discretely.
After all, it's only normal.

|Unix fortune

Some induction algorithms require pre-discretization of the data (e.g., the algorithm for

inducing oblivious decision graphs described in Chapter 6 on page 141). Other algorithms,

such as Naive-Bayes described above and Decision Tables (see Chapter 5 on page 130)

improve in practice when discretization is used. An experimental comparison between

di�erent discretization methods was done in Dougherty et al. (1995) and, for the datasets

tested, discretization by mutual information turned out to be superior to uniform binning,

a class-blind unsupervised discretization method, and to Holte's 1R discretization method,

which is supervised (Holte 1993).

The discretization method used in this dissertation is based on minimizing mutual infor-

mation, originally presented in Catlett (1991b) and later re�ned in Fayyad & Irani (1993).

The method is implemented inMLC++ (Kohavi et al. 1994). This supervised discretization

algorithm uses the mutual information of the class partitions and the partitions formed by

di�erent thresholds to select the discretization boundaries. The notation below closely fol-

lows the notation of Fayyad & Irani (1993). If we are given a set of instances S, a feature

X , and a partition boundary T , that splits S into S1 and S2, the class information entropy
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of the partition induced by T , denoted E(X; T ;S) is given by:

E(X; T ;S) =
jS1j
jSj Ent(S1) +

jS2j
jSj Ent(S2) :

For a given feature X , the boundary Tmin which minimizes the entropy function over all

possible partition boundaries is selected as a binary discretization boundary. This method

can then be applied recursively to both of the partitions induced by Tmin until some stopping

condition is achieved, thus creating multiple intervals on the feature X .

Fayyad and Irani make use of the Minimum Description Length Principle (Rissanen

1978, Rissanen 1986, Wallace & Freeman 1987) to determine a stopping criterion for their

recursive discretization strategy. Recursive partitioning within a set of values S stops i�

Gain(X; T ;S)<
log2(mS � 1)

mS
+
�(X; T ;S)

mS
;

where mS is the number of instances in the set S,

Gain(X; T ;S) = Ent(S)�E(X; T ;S);

�(X; T ;S) = log2(3
k � 2)� k � Ent(S)� k1 � Ent(S1)� k2 �Ent(S2);

and ki is the number of class labels represented in the set Si. Since the partitions along each

branch of the recursive discretization are evaluated independently using this criterion, some

areas in the continuous spaces will be partitioned very �nely, whereas others, which have

relatively low entropy, will be partitioned coarsely. We do not show how these formulas

were derived and refer the reader to Fayyad & Irani (1993) for the details.

There are di�erent ways of encoding trees, as shown in Quinlan & Rivest (1989) and

later in Wallace & Patrick (1993). Fayyad and Irani have proposed one stopping criterion

that seemed to work well in practice, and we believe minor variations will work similarly.

When instances are discretized, it is important to use only the training data for deter-

mining the discretization intervals and discretize the test data using the intervals determined

from the training set. In k-fold cross-validation runs, the instances are discretized k times,

once for each fold.

Theoretically, the discretization should be part of the induction algorithm, and it should

be done over and over when using it in the wrapper approach (Chapter 4); however, the
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discretization process is rather slow, so we chose to discretize the training set once and

then use the wrapper on the discretized data. This methodology leads to slightly optimistic

internal estimates because the discretization intervals were determined using the whole

training set and not using the internal folds of the training set. This bias is su�ciently small,

especially for Naive-Bayes where the discretization is used, that it was worth the time saving.

Note that this approximation only a�ects the internal estimates in the wrapper approach;

results could possibly be improved slightly if discretization was used at every stage. In any

case, this approximation is internal to the induction algorithm itself and does not a�ect

the outer cross-validation that is used to test the induction algorithm. In no way does this

approximation invalidate any of the �nal accuracy results reported.

2.4 The Datasets

Minds think with ideas, not information. No amount of data, bandwidth, or
processing power can substitute for inspired thought.

|Cli�ord Stoll, Silicon Snake Oil, 1994

The performance of di�erent algorithms in this dissertation was evaluated on both arti�-

cial and real-world domains. Arti�cial domains are useful because they allow us to vary

parameters, understand the speci�c problems that algorithms exhibit, and test conjectures.

Real-world domains are useful because they come from real-world problems that we do not

always understand and are therefore actual problems on which we would like to improve

performance. All real-world datasets used are from the UC Irvine repository (Murphy &

Aha 1995), which contains over 100 datasets mostly contributed by researchers in the �eld

of machine learning2 The real-world datasets were chosen based on the following criteria:

dataset size, reasonable encoding, comprehensibility, non-triviality, and age.

Dataset size We chose datasets that had at least 300 instances, so that the variance of

the estimates would not be too large. Even at 300, the variance is rather large, but we

could not �nd enough datasets with at least 500 instances. This restriction ruled out

many datasets, including glass, breast cancer (Ljubljana), golf, hepatitis, iris, labor

negotiations, lenses, lung cancer, and lymphography.

2Many comments have been made about the \real-world datasets" when referring to the UC Irvine
repository. While many databases were stored there because some algorithm was successful at learning
them, we have attempted to select the larger and the nontrivial datasets.
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Reasonable/correct encodings Some datasets have data in encodings that make the

learning task unreasonably hard for no good reason. For example, in the breast

cancer database from Ljubljana (di�erent than the one from Wisconsin), the feature

values were discretized using uniform binning; tumor sizes are groups of �ve, ages

are in intervals of ten, etc. With such encodings, it is extremely hard to learn useful

concepts, and indeed there are very few algorithms that can signi�cantly improve upon

the majority prediction. In the anneal dataset, inapplicable values are incorrectly

marked as unknowns.3

Comprehensibility Given the emphasis on comprehensibility in this dissertation, domains

that cannot be interpreted were ruled out. For example, pixel maps from satellite

images (satimage dataset) were ruled out because in pixel-like domains, all the features

are equally important (the image may be translated) and there is no easy way to

interpret the resulting classi�er, say a decision tree. The following datasets were

also eliminated for this reason: ionosphere, letter, net-talk, segment, tic-tac-toe, and

vehicle. Classi�ers such as nearest-neighbors and neural-nets are more suited for

these parallel tasks (Quinlan 1994), unless the data are preprocessed (see Dietterich,

Hild & Bakiri (1995) for an example where using block-encoding on a text-to-speech

task drastically improved the performance of ID3 and made it indistinguishable from

backpropagation).

Non-trivial datasets The accuracy should not be too high after seeing a small number

of instances. When C4.5 is run on the mushroom dataset or the shuttle dataset,

the accuracy is over 99% after as little as 100 instances. The \odor" feature for the

mushroom dataset, for example, predicts the class with over 98% accuracy.

Age We avoided using old datasets, such as chess, hypothyroid, and vote because some

algorithms (e.g., C4.5) were developed over these datasets and there is a chance that

the algorithms are well tuned to these datasets. Since these datasets were used over

and over for years, researchers seeing the test-set accuracies are indirectly over�tting

these datasets by tuning their parameters. This problem is one of the main concerns

people raise with the use of UC Irvine datasets.

3This is the main reason neural-networks outperformed decision trees and rules in Scha�er (1993). For
the neural-networks, Scha�er encoded unknowns as a separate value. If we correct the encoding, C4.5's
accuracy is equivalent to or better than that of the neural-networks.
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We chose to experiment with the following real-world domains:

Breast cancer Wisconsin There are 699 instances collected from Dr. Wolberg's clinical

cases at the University of Wisconsin (Wolberg & Mangasarian 1990, Zhang 1992a).

These were collected over a period of two and a half years, and the problem is to de-

termine whether the tumors were benign or malignant based on data for each cancer

patient. There are ten features, where one is the serial number, and nine are identify-

ing characteristics: clump thickness, uniformity of cell size, uniformity of cell shape,

marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal

nucleoli, and mitosis. The features are all linearly ordered but discrete in the range

(1-10) and hence de�ned as \continuous" (see Section 2.1 on page 16). There are 16

missing values, all in the bare nuclei feature.

Cleveland heart disease (cleve) There are 303 instances from Dr. Detrano. The task

is to distinguish the presence or absence of heart disease in patients. There are seven

nominal features and six continuous. The features include: age, sex, chest pain type,

cholesterol, fasting blood sugar, resting ECG, max heart rate, etc.

Australian credit screening (crx) There are 690 instances from an Australian credit

company. The task is to determine whether to give a credit card to an applicant. The

features have been coded to preserve con�dentiality. The dataset was �rst used in

Quinlan (1987). There are six continuous features and nine nominal ones.

DNA There are 3,186 instances in the StatLog version of the DNA dataset we used (Taylor

et al. 1994). The domain is drawn from the �eld of molecular biology. Splice junctions

are points on a DNA sequence at which \superuous" DNA is removed during protein

creation. The task is to recognize exon/intron boundaries, referred to as EI sites;

intron/exon boundaries, referred to as IE sites; or neither. The IE borders are referred

to as \acceptors" and the EI borders are \donors." The instances were taken from

GenBank 64.1 (genbank.bio.net). The features provide a window of 60 nucleotides,

each represented as 3 binary indicator features that represent the value a,c,g, or t,

thus giving 180 binary features. The classi�cation is the middle point of the window,

thus providing 30 nucleotides at each side of the junction.

Horse colic There are 368 instances in this dataset created by Mary McLeish & Matt

Cecile from the University of Guelph. The task is to determine whether a lesion is
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surgical. There are 22 features, of which seven are continuous. The features describe

whether the horse had surgery, whether it is young or old, rectal temperature, pulse,

respiratory rate, temperature of extremities, mucous membrane color, capillary re�ll

time, pain (subjective judgment), etc.

Pima Indian diabetes (pima) There are 768 instances from the National Institute of

Diabetes and Digestive and Kidney Diseases. The task is to determine whether the

patient shows signs of diabetes according to World Health Organization criteria. All

patients are females who live near Phoenix, Arizona. They are at least 21 years old

and of Pima Indian heritage. There are eight continuous features: number of times

pregnant, plasma glucose concentration, diastolic blood pressure, triceps skin fold

thickness, 2-hour serum insulin, body mass index, diabetes pedigree function, and

age.

Sick euthyroid There are 3163 instances from the Garavan institute in Sydney, Australia.

The task is to identify a patient as having thyroid disease. There are 18 nominal

features and 7 continuous ones, including: age, sex, on-thyroxine, pregnant, sick,

tumor, TSH-measured, TSH value, etc.

Soybean (large) There are 683 instances in this dataset. The task is to diagnose soybean

diseases. There are 19 classes and 35 discrete features describing leaf properties and

various abnormalities.

We chose to experiment with the following arti�cial domains:

Monk's problems The Monk's problems are three arti�cial problems that allow compar-

ison of algorithms. In Thrun et al. (1991), 24 authors have compared 25 machine

learning algorithms on three arti�cial problems. In the given domain, robots have six

di�erent nominal features as follows:

Head-shape 2 fround, square, octagong,
Body-shape 2 fround, square, octagong,
Is-smiling 2 fyes, nog,
Holding 2 fsword, balloon, agg,

Jacket-color 2 fred, yellow, green, blueg,
Has-tie 2 fyes, nog.
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We now describe the three problems:

Monk1 The standard training set contains 124 instances from the following target

concept:

(head-shape = body-shape) or (jacket-color = red)

This problem is hard because of the interaction between the �rst two features

(head shape and body shape) and because a multi-way split that is usually done

by C4.5 fragments the data if a split is done on jacket-color. If the instances are

projected on the three relevant features, 35 out of the 36 possible instances are

given in the training set, making the problem easy. However, many induction

algorithms do not do a good job at selecting the correct features.

Monk2, Monk2-local The standard training set contains 169 instances from the

following target concept:

Exactly two of the features have their �rst value.

This second problem has no irrelevant features which makes it a very hard prob-

lem in the original encoding using six nominal features. However, if we encode

it using a local representation, where each feature value is represented by one

Boolean indicator feature, many features become irrelevant. Thrun and Fahlman

used this encoding scheme when neural nets were tested, and this encoding will

be termed Monk2-local in this dissertation. Under a local-representation en-

coding, there are 17 features, but 11 of them are irrelevant.

Monk3 The standard training set contains 122 instances from the following target

concept:

(jacket-color = green and holding = sword) or

(jacket-color 6= blue and body-shape 6= octagon)

In the standard training set, 5% of the instances have their label reversed, and

it is thus the only Monk problem that is not noise-free. It is also important to

observe that 97.2% accuracy is achievable using only the second disjunction, i.e.,

jacket-color 6= blue and body-shape 6= octagon.
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Corral There are 32 instances in this Boolean dataset, which contains six features: A0,

A1, B0, B1, \irrelevant," and \correlated." The target concept is

(A0 ^ A1) _ (B0 ^ B1) :

The feature named \irrelevant" is uniformly random, and the feature named \cor-
related" matches the class label 75% of the time (for speci�c instances). Greedy

strategies for building decision trees pick the \correlated" feature as it seems best by

all known selection criteria. After the wrong root split, the instances are fragmented

and there is not enough data at each subtree to describe the correct concept. Fig-

ure 2.1 shows the decision tree induced by C4.5. CART induces a similar decision

trees with the \correlated" feature at the root. When this feature is removed, the

correct tree is found as can be seen in Figure 2.2.

As mentioned in Section 2.2 on page 19, the version of ID3 that we use is basically

C4.5 with pruning turned o�. Because C4.5 executes a post-processing step that

replaces a node by its child if it is considered more accurate, the root node in Corral

is indeed replaced by the correct child when pruning is turned o�, leading to a perfect

tree. Even though ID3 does well on this dataset, it is a dataset where selecting the

correct set of relevant features is hard: the \correlated" feature is selected by almost

all greedy methods.

m-of-n-3-7-10 There are 300 training instances in this Boolean dataset. The target is

that at least three bits of bits numbered three to nine are set to one (bits one, two,

and ten are irrelevant). Such target concepts are common in medical domains where

a patient needs to exhibit at least m of a set of n symptoms to be diagnosed with

some disease (Spackman 1988). Towell & Shavlik (1993) showed the representation of

neural networks closely resembles m-of-n concepts. This concept is extremely hard in

terms of feature interactions. Seven features interact here, and most algorithms are

unable to identify the correct features.

Table 2.2 provides a summary of the characteristics of the datasets. Small datasets were

tested using ten-fold cross-validation; arti�cial datasets and large datasets were split into

train and test sets (the arti�cial datasets have a well de�ned training set, as does the DNA

dataset form StatLog). The baseline accuracy is the accuracy (on the whole dataset) when

predicting the majority class.
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Figure 2.1: The \Corral" datasets fools top-down decision-tree algorithms into picking the
\correlated" feature for the root, causing fragmentation, which in turns causes the irrelevant
feature to be chosen. This tree was induced by C4.5 with the default parameters.
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Figure 2.2: The correct tree induced by C4.5 when the \irrelevant" and \correlated" features
are removed.
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Table 2.2: Summary of datasets. Datasets above the horizontal line are \real" and those
below are arti�cial. CV indicates ten-fold cross-validation.

no. Dataset Features no. Train Test baseline
all nominal cont classes size size accuracy

1 breast cancer 10 0 10 2 699 CV 65.52
2 cleve 13 7 6 2 303 CV 54.46
3 crx 15 9 6 2 690 CV 55.51
4 DNA 180 180 0 3 2000 1186 51.91
5 horse-colic 22 15 7 2 368 CV 63.04
6 Pima 8 0 8 2 768 CV 65.10
7 sick-euthyroid 25 18 7 2 2108 1055 90.74
8 soybean-large 35 35 0 19 683 CV 13.47

9 corral 6 6 0 2 32 128 56.25
10 m-of-n-3-7-10 10 10 0 2 300 1024 77.34
11 Monk1 6 6 0 2 124 432 50.00
12 Monk2-local 17 17 0 2 169 432 67.13
13 Monk2 6 6 0 2 169 432 67.13
14 Monk3 6 6 0 2 122 432 52.78

2.5 The Bias-Variance Tradeo�

How do we tell a kid that not everything the computer says is right? Most of us
know better, but we still have a long-standing trust in computers|they don't

make mistakes, they don't have biases, they don't lie or cheat.
|Cli�ord Stoll, Silicon Snake Oil, 1994

The bias of a method that estimates a parameter � is de�ned as the expected estimated

value (E[�̂]) minus the value of �:

Bias = E[�̂]� � :

An unbiased estimation method is a method that has zero bias.

The variance of a method is the statistical variance of the estimates:

Var = E

��
�̂ � E[�̂]

�2�
Given a regression problem, where the label y is real-valued, we can measure the ef-

fectiveness of a method I (an inducer) that predicts the label from an instance ~x as the
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squared di�erence between the prediction and the expected value of y at ~x. If D is the

input to the inducer (training set), then the e�ectiveness, or squared error, of the inducer

at ~x is:

(I(D; ~x)�E[y j ~x])2

where the expectation is taken overD, the probability distribution over the labelled instance

space. Taking expectation with respect to the training set D (i.e., averaging over all possible

training sets of the given size), yields

ED

h
(I(D; ~x)� E[y j ~x])2

i
;

which can be decomposed as follows (Geman, Bienenstock & Doursat 1992):

ED

"�
I(D; ~x)�E[y j ~x]

�2#

Subtract and addED [I(D; ~x)]

= ED

"�
(I(D; ~x)�ED [I(D; ~x)]) + (ED [I(D; ~x)]�E[y j ~x])

�2#

(a+ b)2 = a2 + b2 + 2ab

= ED

"�
I(D; ~x)� ED [I(D; ~x)]

�2#
+ED

"�
ED [I(D; ~x)]� E[y j ~x]

�2#
+

2ED

�
(I(D; ~x)�ED [I(D; ~x)]) (ED [I(D; ~x)]�E[y j ~x])

�
E[c] = c for constant c

= ED

"�
I(D; ~x)� ED [I(D; ~x)]

�2#
+

�
ED [I(D; ~x)]�E[y j ~x]

�2
+

2ED

�
(I(D; ~x)�ED [I(D; ~x)])

�
� (ED [I(D; ~x)]�E[y j ~x])

now ED

�
(I(D; ~x)�ED [I(D; ~x)])

�
= ED [I(D; ~x)]� ED [I(D; ~x)] = 0

= ED

"�
I(D; ~x)� ED [I(D; ~x)]

�2#
+

�
ED [I(D; ~x)]�E[y j ~x]

�2
= \variance" + \bias"
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If, on average, I(D; ~x) is di�erent from E[y j ~x], then the inducer is a biased estimator

of E[y j ~x]. (An estimator may be biased for one class of target concepts and not for

others.) It may be that an estimator is unbiased, yet it has high variance, i.e., when the

predictions of classi�er I(D) may be very di�erent from their expected value. In these

cases, the inducer has high variance, and this may be the dominant term contributing to

the overall squared error.

The main problem with the bias-variance decomposition, as shown, is that is applies only

to the squared-error loss function. There are no known equivalent formulations for the zero-

one loss function, which is more commonly used in experimental machine learning. Wolpert

(1995) has recently proposed using log-loss for categorical outputs, and has shown a similar

decomposition, where the bias is the Kullback-Leibler distance between the probabilities

assigned to the labels by the target concept and the expected probabilities assigned by the

inducer.

2.6 Experimental Methodology

If we take in our hand any volume; of divinity or school metaphysics, for
instance; let us ask, Does it contain any abstract reasoning concerning quantity

or number? No. Does it contain any experimental reasoning, concerning

matter of fact and existence? No. Commit it then to the ames: for it can
contain nothing but sophistry and illusion.

|David Hume, An Enquiry Concerning Human Understanding, 1748

Except for Chapter 3, where the experimental methodology is di�erent (and explained

there), the experiments in this dissertation compare runs of two or more algorithms on the

datasets described above. For datasets that are large enough and for arti�cial data where

there is a well de�ned training and test set, we report the accuracy on the test set, and

the theoretical standard deviation as explained in Section 3.2.2 on page 39. For smaller

datasets, we execute ten-fold cross-validation (described in Section 3.2.3 on page 41) and

report the mean accuracy and the standard deviation of the folds.

To determine whether the di�erence between two algorithms is signi�cant or not, we

report the p-values, which indicate the probability that one algorithm is better than the

other, where the variance of the test is the average variance of the two algorithms and a

normal distribution is assumed. A more powerful test would have been to conduct a paired

t-test for each instance tested, or for each fold, but the overall picture would not change

much.
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Figure 2.3: Absolute di�erence (ID3-HC-FSS minus ID3) in accuracy (left) and in std-devs
(right).

Whenever we compare two or more algorithms, A1 and A2, we give the table of accu-

racies, and show two bar graphs. One bar graph shows the absolute di�erence, A2 �A1, in

accuracies and the second bar graph shows the accuracy di�erence divided by the standard

deviation of the accuracy, i.e., (A2�A1)=std-dev. The second bar graph shows the accuracy

di�erence in di�erent units|standard deviations|so we can easily tell which results are

signi�cant and by how much. For example, Figure 2.3 shows two bar graphs, one showing

the absolute di�erence in accuracy, and one showing the di�erence in standard deviations.

Corresponding bars (same number) will always be in the same direction from the origin,

but their height might be di�erent (e.g., datasets 4 and 9).

Comparisons will generally be made such that A2 is the algorithm proposed just prior

to the comparison (the \new" algorithm) and A1 is either a standard algorithm, such as

C4.5, or the previous proposed algorithm. When the bar is above zero A2, the proposed

algorithm, outperforms A1, which we are comparing with.

When two bar graphs are shown, the left one measures the absolute dif-

ference in accuracy and the right one measures the accuracy di�erence in

standard-deviations (s.d.). When the length of the bars on the standard-

deviation chart are higher than two, the results are signi�cant at the 95%

con�dence level.

When we mention the amount of time it took to run the algorithms, these are reported

in CPU units (hours, minutes, seconds) on a Sun Sparc 10 for a single train-test sequence.



Chapter 3

Accuracy Estimation

FORECAST: A prediction of the future, based on the past, for which the
forecaster demands payment in the present.

|Unix fortune

Estimating the accuracy of a classi�er induced by a supervised learning algorithm is im-

portant not only in order to predict its future performance, but also in order to choose a

classi�er from a given set (model selection), or in order to combine classi�ers. Although

the study of accuracy estimation was originally motivated by the fact that the wrapper

approach (Chapter 4) requires estimating the accuracy of hundreds of classi�ers, the results

and observations are not limited to use in wrappers and could be of general use.

We review accuracy estimation methods, compare cross-validation and the .632 boot-

strap, and look at methods to stabilize the estimate of cross-validation. We report on a

large-scale experiment|over a million runs of C4.5 and a Naive-Bayes algorithm|to esti-

mate the e�ects of di�erent variants of cross-validation on real-world datasets. For the .632

bootstrap, we vary the number of samples; for cross-validation, we vary the number of folds,

the number of times the folds are generated, strati�cation, and trimming. The number of

times cross-validation is executed has a large e�ect on the variance of k-fold cross-validation

for k less than ten; in fact, the variance decreases as k decreases if repeated cross-validation

is done; this result contrasts with the U-shape curved when a single cross-validation is done.

We conclude that for model selection and datasets similar to ours, it is best to use k-fold

cross-validation for low values of k (i.e., k � 10), even if computation power allows using

more folds (e.g., leave-one-out).

35
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3.1 Introduction

Today's data analyst can a�ord to expend more computation on a
single problem than the world's yearly total of statistical computation

in the 1920s.
|Efron & Tibshirani (1991)

Estimating the accuracy of a classi�er induced by a supervised learning algorithm is im-

portant not only in order to predict its future performance, but also in order to choose a

classi�er from a given set (model selection) as in Scha�er (1993), or in order to combine

classi�ers (Wolpert 1992b, Breiman 1994a). For estimating the �nal accuracy of a classi�er,

we would like an estimation method with low bias and low variance. To choose a classi�er or

to combine classi�ers, the absolute accuracies are less important, and we are willing to trade

o� bias for low variance, assuming the bias a�ects all classi�ers similarly (e.g., estimates

are 5% pessimistic).

Computer power has grown to a point where computer intensive methods for accuracy

estimation are used more often and on larger datasets. Methods such as cross-validation and

bootstrap require parameters that determine the quality of the estimates. In this chapter,

we explain some of the assumptions made by the di�erent estimation methods and present

concrete examples where each method fails. While it is known that no accuracy estimation

can be correct all the time (Wolpert 1994b, Scha�er 1994), we are interested in identifying

methods that are well suited for the biases and trends in typical real world datasets.

For years it was generally assumed that higher folds for cross-validation (up to leave-

one-out) would yield better estimates, usually at the expense of longer computation time.

For example, Weiss & Kulikowski (1991) write that \While leaving-one-out is a preferred

technique, with large sample sizes it may be computationally quite expensive." Mosteller &

Tukey (1968) wrote the following: \Suppose that we set aside one individual case, optimize

for what is left, then test on the set-aside case. Repeating this for every case squeezes the

data almost dry."

The use of incremental induction algorithms, however, allows cross-validation in time

that is independent of the number of folds (Kohavi 1995a, Moore & Lee 1994, Utgo� 1994).

With such algorithms, leave-one-out takes exactly the same time as ten-fold cross-validation;

is it clear that leave-one-out should be preferred? While leave-one-out is almost unbiased

(Lachenbruch 1967, Glick 1978, Efron 1983), it has high variance, leading to unreliable

estimates. Recent results, both theoretical and experimental, have shown that it is not
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always the case that increasing the number of folds is bene�cial, especially if the variance

is more important than the bias, as is the case with model selection.

On the theoretical side, using leave-one-out cross-validation for model selection of linear

models is asymptotically inconsistent: the probability of selecting the model with the best

predictive power does not converge to one as the total number of observations approaches

in�nity (Zhang 1992b, Shao 1993). On the experimental side, Breiman & Spector (1992)

and Kohavi (1995a) found that �ve-fold and ten-fold cross-validation are better for model

selection of feature subsets than leave-one-out.

In this chapter, we assess the di�erent e�ects that parameters have on the bias and

variance of the two best-known accuracy estimators: the .632 bootstrap and cross-validation.

For the .632 bootstrap, we vary the number of samples; for cross-validation, we vary the

number of folds, the number of times cross-validation is executed, and whether or not a

trimmed mean is used.

This chapter is organized as follows. In Section 3.2, we describe the common accuracy

estimation methods and ways of computing con�dence bounds. In Section 3.3, we discuss the

methodology underlying our experiments. In Section 3.4, we evaluate the bias and variance

of cross-validation and the .632 bootstrap and in Section 3.5, we evaluate cross-validation

variants in an attempt to stabilize the accuracy estimates. In Section 3.6, we describe a

technique to extrapolate the learning curve in order to reduce the bias. In Section 3.7, we

discuss related work and we conclude with a discussion of future work and a summary in

Sections 3.8 and 3.9.

3.2 Methods for Accuracy Estimation

The term assessment is preferred to validation which has a ring of
excessive con�dence about it.

|Stone (1974)

Given a �nite dataset, we would like to estimate the future performance of a classi�er in-

duced by the given inducer and dataset. A single accuracy estimate is usually meaningless

without a con�dence interval; thus we will consider how to approximate such an interval

when possible. An excellent review of accuracy estimation (not including bootstrap) in the

context of nearest-neighbor algorithms can be found in Devijver & Kittler (1982, Chap-

ter 10). McLachlan (1992, Chapter 10) provides a review of more recent methods from a

statistical perspective.
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Real world
Dataset

Sample 2

Sample k

Sample 1

Distribution D
Distribution D’

Figure 3.1: Accuracy estimation techniques, such as holdout, cross-validation, and boot-
strap, are all based on the idea of resampling.

Except for the resubstitution estimate, all the non-parametric estimators that will be

explained are based on the idea of resampling , depicted in Figure 3.1. The real world has

some unknown distribution D. Our dataset has distribution D0, which is assumed to be

similar to the distribution D. In order to estimate the accuracy of inducers trained based

on D0, we create samples from D0, train on these samples, and test on instances from D0

(usually out-of-sample instances). We thus simulate the sampling process that occurred in

the real world, assuming that D0 is the real world.

3.2.1 Resubstitution Estimate

All the present recommendations are predicated on small-to-moderate training
sample sizes, perhaps in the range of 10-50. . . . for large samples, there is no
need to look further than the resubstitution estimator when seeking a robust

method.
|Knoke (1986)

The resubstitution estimate of the accuracy, sometimes called apparent accuracy, tests the

classi�er on the same data given to the inducer. Formally, we have

accs =
1

m

X
h~xi;yii2D

�(I(D; ~xi); yi) (3.1)
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where �(i; j) = 1 if i = j and 0 otherwise.

The resubstitution estimate is a highly optimistic estimate of accuracy because classi-

�cation procedures attempt to minimize it. For restricted hypothesis spaces, e.g., linear

discrimination, where it is usually hard to �t large amounts of data, the resubstitution esti-

mate is reasonable. For example, Knoke (1986) (quoted above) wrote that for large samples,

the resubstitution estimate is the best accuracy estimation to use, but he assumes that the

classi�cation is based on linear discriminant functions. For many induction algorithms that

perfectly �t the data, such as one nearest-neighbor or decision tree induction algorithms

that do not prune, the resubstitution estimate is very optimistic; if there are no conicting

instances, the accuracy estimate will be 100%.

3.2.2 Holdout

The holdout method, sometimes called test sample estimation, randomly partitions the data

into two mutually exclusive subsets called the training set and the test set, or holdout set.

It is common to designate 2/3 of the data as the training set and the remaining 1/3 as the

test set. The training set is given to the inducer, and the induced classi�er is tested on the

test set. Formally, let Dh, the holdout set, be a subset of D of size h, and let Dt be D nDh.

The holdout estimated accuracy is de�ned as

acch =
1

h

X
h~xi;yii2Dh

�(I(Dt; ~xi); yi) ; (3.2)

where �(i; j) = 1 if i = j and 0 otherwise. Assuming that the inducer's accuracy increases

as more instances are seen, the holdout method is a pessimistic estimator because only a

portion of the sample is given to the inducer for training. The more instances we leave for

the test set, the higher the bias of our estimate; however, fewer test set instances will cause

the con�dence interval for the accuracy to be wide, as shown below.

The classi�cation of each test instance can be viewed as a Bernoulli trial: either correct

or incorrect labelling. Let S be the number of correct classi�cations on the test set, then

S is distributed binomially (sum of Bernoulli trials). For reasonably large holdout sets,

the distribution of S=h is approximately normal with mean acc (the true accuracy of the

classi�er) and a variance of acc � (1 � acc)=h. Thus, by applying the De Moivre-Laplace



CHAPTER 3. ACCURACY ESTIMATION 40

limit theorem, we have

Pr

(
�z < acch � accp

acc(1� acc)=h
< z

)
�  ; (3.3)

where z is the (1 + )=2-th quantile point of the standard normal distribution. To get a

100 percent con�dence interval, one determines z and inverts the inequalities.

Inversion of the inequalities leads to a quadratic equation in acc, the roots of which are

the low and high con�dence points:

2h � acch + z2 � z �
q
4h � acch + z2 � 4h � acc2h

2(h+ z2)
: (3.4)

The above equation is not conditioned on the dataset D; if background information is

available about the probability of the given dataset, it must be taken into account.

A simpler expression can be derived by the plug-in-estimate acch for acc in the denom-

inator of Equation 3.3, yielding the following low and high con�dence points:

acch � z �
s
acch(1� acch)

h
: (3.5)

This simpler approximation is inaccurate for small values of h and for extreme accuracies.

For example, if the estimated accuracy is 100%, a zero width con�dence interval is obtained

for any value of z when using this approximation.

The holdout estimate is a random number that depends on the division into a training

set and a test set. In random subsampling, the holdout method is repeated k times,

for di�erent random partitions, and the estimated accuracy is derived by averaging the

estimated holdout accuracies. The standard deviation of the accuracy can be estimated as

the standard deviation of the accuracy estimations from each holdout run. Note, however,

that one cannot compute the standard deviation of the mean by dividing the population

mean by
p
k because the estimates are neither independent nor approximately so (the same

test instances are used multiple times). Regrettably, many researchers in the �eld claim

the signi�cance of their results by increasing k until the di�erence, as small as it it, is made

signi�cant. To compute the variance, we recommend using the percentile method (Efron &

Tibshirani 1993, pp. 168-176). A 1� 2� con�dence interval is de�ned by taking the � and

1�� quantiles of the estimates. This procedure requires that k be large, say at least 50, so
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that there is enough data to estimate the 5% mass in the tails if a 95% con�dence interval

is sought.

The main assumption that is violated in random subsampling is the independence of

instances in the test set from those in the training set. Under repeated samplings, the union

of the training set and test set is constrained to be equal to the given dataset. If the training

set and test set are formed by a split of an original dataset, then an over-represented class in

one subset will be under-represented in the other. To demonstrate the issue, we simulated

a 2/3, 1/3 split of Fisher's famous iris dataset (Fisher 1936) and used a majority inducer

that builds a classi�er predicting the prevalent class in the training set. The iris dataset

describes iris plants using four continuous features, and the task is to classify each instance

(an iris) as Iris Setosa, Iris Versicolour, or Iris Virginica. For each class label, there are

exactly one third of the instances with that label (50 instances of each class from a total of

150 instances); thus we expect 33.3% prediction accuracy. However, because the test set will

always contain less than 1/3 of the instances of the class that was prevalent in the training

set, the accuracy predicted by the holdout method is 27.68% with a standard deviation of

0.13% (estimated by averaging 500 holdouts).

In practice, the dataset size is always �nite, and usually smaller than we would like it to

be. The holdout method makes ine�cient use of the data: a third of the dataset is not used

for training the inducer. The next method mitigates the problem of hiding a large portion

of the dataset from the algorithm.

3.2.3 Cross-Validation, Leave-one-out, and Strati�cation

Since the basic philosophy of cross-validation is non-probabilistic and
non-parametric, it is perhaps not surprising that supporting theory is

rather meagre.
|Stone (1978)

In k-fold cross-validation, sometimes called rotation estimation, the dataset D is randomly

split into k mutually exclusive subsets (the folds) D1;D2; : : : ;Dk of approximately equal

size. The inducer is trained and tested k times; each time t 2 f1; 2; : : : ; kg, it is trained on

DnDt and tested on Dt.
1 The cross-validation estimate of accuracy is the overall number of

correct classi�cations, divided by the number of instances in the dataset. Formally, let D(i)
be the test set that includes instance h~xi; yii, then the cross-validation estimate of accuracy

1The notation A n B indicates set A minus set B.
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is

acccv =
1

m

X
h~xi;yii2D

�(I(D n D(i); ~xi); yi) : (3.6)

The cross-validation estimate is a random number that depends on the division into

folds. Complete cross-validation is the average of all
� m
m=k

�
possibilities for choosingm=k

instances out of m, but it is usually too expensive (Geisser 1975). Except for leave-one-out

(m-fold cross-validation), which is always complete, k-fold cross-validation is estimating

complete k-fold cross-validation using a single split of the data into the folds. Repeating

cross-validation multiple times using di�erent splits into folds provides a better Monte-Carlo

estimate to the complete cross-validation at an added cost.

Stone (1974) is credited with the �rst formal description of cross-validation and its uses

for choosing statistical predictors; however, he credited Mosteller, Wallace, and Lachen-

bruch for the idea. Lachenbruch (1967) described leave-one-out as a method for obtaining

con�dence intervals. Linhart & Zucchini (1986) claimed that the idea was explicitly stated

in psychometric literature in the 1930s.

In strati�ed cross-validation, the folds are strati�ed so that they contain approxi-

mately the same proportions of labels as the original dataset. Breiman et al. (1984, Section

8.7) claimed that, especially for regression, strati�cation is the preferred method for selecting

the right-sized tree; the cross-validation used in CART and in the C4.5 cross-validation util-

ity, xval.sh, is strati�ed; and Weiss, who has done much work in accuracy estimation, uses

strati�ed cross-validation in his experiments (Weiss 1991, Weiss & Indurkhya 1994a, Weiss

& Indurkhya 1994b). An asymptotic (m!1) theoretical analysis done by Olshen, Gilpin,

Henning, LeWinter, Collins & Ross (1985) showed that if the label is independent of the fea-

tures (i.e., random), then for building decision trees by recursive-partitioning, strati�cation

helps a single-fold of cross-validation, in the sense that the mean-squared error is smaller.

A later theoretical analysis done by Bai (1988) showed that under some assumptions (�nite

instance space, unequal class probabilities), strati�cation neither helps nor hurts two-fold

cross-validation in terms of mean squared error because it increases the covariance between

the folds.

The cross-validation accuracy is sometimes de�ned as the average of the estimated

accuracies from the k runs, and not as in Equation 3.6. This estimation method is accurate

for all but very small samples, and it is the version we use in our experiments because it

allows us to test the e�ect of trimming and the normality assumption (see Section 3.5).
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The estimate is not a good approximator for small samples because if one does ten-fold

cross-validation for 15 instances, ten test sets will be created, �ve having one instance and

�ve having two instances. While Equation 3.6 gives equal weight to each test instance, an

average of the folds will double the weight given to the instances in the �ve folds containing

a single instance.

We now attempt to understand when the cross-validation estimate is justi�ed. A per-

turbation to a dataset is the deletion or addition of an instance to the dataset. An inducer

is stable for a given dataset and a set of perturbations, if it induces classi�ers that make

the same predictions when it is given the perturbed datasets. This de�nition of stability

does not require that the instances have to be smooth under some metric, nor is it required

that the inducer be stable for all datasets; what is important is that the combination of the

inducer and the dataset is stable under the perturbations we conduct. An inducer may be

biased to �nd parity-like concepts in Boolean domains, and will induce the correct classi-

�ers, even though neither the data, nor the concept is smooth. A majority inducer is a very

stable inducer, except when it is given data where the di�erences in prevalences are small.

Proposition 1 (Variance in k-fold CV)

Given a dataset and an inducer. If the inducer is stable under the perturbations that delete

the instances for the folds in k-fold cross-validation, the cross-validation estimate will be

unbiased and the variance of the estimated accuracy will be approximately acccv � (1 �
acccv)=m, where m is the number of instances in the dataset.

Proof: If we assume that the k classi�ers produced make the same predictions, then the

estimated accuracy has a binomial distribution with m trials and a probability of success

equal to the accuracy of the classi�er.

A con�dence interval may be computed using either Equation 3.4 or Equation 3.5 on

page 40 with h equal to m, the number of instances. Breiman et al. (1984, Chapter 3) used

this method to derive the standard deviation of the accuracy estimates, which was then

used in the \1 SE rule" for inducing decision trees.

Note that the inducer must not have been chosen using an accuracy estimation method.

Such a choice violates the assumption that the inducer was determined in advance and given

access only to a training set. By choosing an inducer based on the accuracy estimation, we

are in e�ect giving the inducer indirect access to the (internal) test set.
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In reality, a complex inducer is unlikely to be stable for large perturbations, unless it has

reached its maximal learning capacity. We expect the perturbations induced by leave-one-

out to be small, and therefore, the classi�er should be very stable. As we increase the size of

the perturbations, stability is less likely to hold: we expect stability to hold more in 20-fold

cross-validation than in ten-fold cross-validation, and both should be more stable than a

holdout of 1/3. The proposition does not apply to the resubstitution estimate because it

requires the inducer to be stable when no instances are given in the dataset.

Proposition 1 helps us understand one possible assumption that is made when using

cross-validation, namely stability. If an inducer is unstable for a particular dataset under

a set of perturbations introduced by cross-validation, the accuracy estimate is likely to be

unreliable. If the inducer is almost stable on a given dataset, we should expect a reliable

estimate. The next corollary takes the idea slightly further and shows a result that we

have observed empirically: there is very little change in the variance of the cross-validation

estimate when the number of folds is varied.

Corollary 2 (Variance in cross-validation)

Given a dataset and an inducer. If the inducer is stable under the perturbations caused by

deleting the test instances for the folds in k-fold cross-validation for various values of k,

then the variance of the estimates will be the same.

Proof: The variance of k-fold cross-validation in Proposition 1 does not depend on k.

Breiman (1994b) discusses the instability of some induction algorithms. While some

inducers are likely to be inherently more stable, the following example shows that one must

also take into account the dataset and the actual perturbations.

Example 3.1 (Failure of leave-one-out)

Fisher's iris dataset (Fisher 1936) contains 50 instances of each class, leading one to expect

that a majority inducer should have an accuracy of about 33%. However, the combination

of this dataset with a majority inducer is unstable for the small perturbations performed by

leave-one-out. When an instance is deleted from the dataset, its label is a minority in the

training set; thus the majority inducer predicts one of the other two classes and always errs

in classifying the test instance. The leave-one-out estimated accuracy for a majority inducer

on the iris dataset is therefore 0%. Moreover, all folds have this estimated accuracy; thus

the standard deviation of the folds is again 0%, giving the unjusti�ed assurance that the
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estimate is stable. Doing k-fold cross-validation for k < m yield better estimates, but still

not the 33.3% one expects. Averaging 100 runs of ten-fold cross-validation, an estimated

accuracy of 21.57% with a standard deviation of 0.21% was obtained. See Section 3.2.5 on

page 47 for more discussion on this problem.

The example shows an inherent problem with cross-validation that applies to more than

just a majority inducer. In a no-information dataset, where the label values are completely

random, the best an induction algorithm can do is predict majority. Leave-one-out on such

a dataset with 50% of the labels for each class and a majority inducer (the best possible

inducer) would still predict 0% accuracy.

3.2.4 Bootstrap

The bootstrap family was introduced by (Efron 1979) and is fully described in Efron &

Tibshirani (1993). Mammen (1992) studies bootstrap for non-parametric curve estimation

and linear models.

Given a dataset of size m, a bootstrap sample is created by sampling m instances

uniformly from the data (with replacement). Since the dataset is sampled with replacement,

the probability of any given instance not being chosen after m samples is (1 � 1=m)m �
e�1 � 0:368; the expected number of distinct instances from the original dataset appearing

in the test set is thus 0:632m.

The �0i accuracy estimate is derived by using bootstrap sample i for training and the

rest of the instances for testing. Given a number b, the number of bootstrap samples, let

�0i be the accuracy estimate for bootstrap sample i. The .632 bootstrap estimate is de�ned

as

accboot =
1

b

bX
i=1

(0:632 � �0i + :368 � accs) (3.7)

where accs is the resubstitution accuracy estimate on the full dataset (i.e., the accuracy on

the training set). Bootstrap has many variants not discussed here, including bias-corrected

bootstrap where the bias of the bootstrap samples is assessed and added to the estimates,

and parametric bootstrap that can take advantage of the background knowledge about the

underlying distribution that generated the data. For non-parametric estimation, the .632

bootstrap was claimed to be the best (Efron 1983).
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The variance of the estimate can be determined by computing the variance of the esti-

mates for the samples. One of the main questions in using bootstrap is how many bootstrap

samples to use. Efron & Tibshirani (1993) suggest that 50 to 200 samples should be enough

for computing the variance. Because only .632 of the instances in the dataset are used for

training, the �0 bootstrap estimate is closely related to two-fold cross-validation and Efron

suggests that 2-CV might be similarly corrected with the resubstitution accuracy (Efron

1983).

The assumption made by bootstrap is basically the same as that of cross-validation, i.e.,

stability of the algorithm on the dataset: the \bootstrap world" should closely approximate

the real world. In many cases, it is obvious that the bootstrap worlds are inappropriate. For

example, if you try to estimate the number of duplicate instances, the bootstrap worlds will

de�nitely over-estimate the statistics because approximately .368 of the original instances

will be duplicates. Some machine learning algorithms ignore duplicate instances directly

or indirectly. Nearest-neighbor algorithms (1-NN), for example, are una�ected by dupli-

cates (except for rare cases of breaking ties), and Jain, Dubes & Chen (1987) wrote that

\[Bootstrap .632 is] not appropriate for nearest-neighbor classi�ers."

The :632 factor in Equation 3.7 on the page before is somewhat ad-hoc and can be

justi�ed only if the accuracy varies between the resubstitution and the �0i accuracy linearly

with the distance of the test instance from the closest instance in the training set (under

some distance function!). The .632 factor is only a heuristic, as Efron (1983) writes that

\The .632 estimator. . . has the weakest theoretical justi�cation." This linearity assumption

fails for inductions that are good memorizers, i.e., inducers that produce classi�ers, which

are able to perfectly classify the training set.

Speci�cally, the .632 bootstrap fails to give the expected result when the classi�er is a

perfect memorizer (e.g., an unpruned decision tree or a one nearest-neighbor classi�er) and

the label values are completely random, say with two classes. The resubstitution accuracy

is 100%, and the �0 accuracy is about 50%. Plugging these into the bootstrap formula, one

gets an estimated accuracy of about 68.4%, far from the real accuracy of 50%.

Bootstrap can be shown to fail if we add a memorizer module to any given inducer

and adjust its predictions. If the memorizer remembers the training set and makes the

predictions when the test instance was a training instance, adjusting its predictions can

make the resubstitution accuracy change from 0% to 100% and can thus bias the overall
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estimated accuracy in any direction we want.

3.2.5 Bias and Variance

The bias of a method that estimates a parameter � is de�ned as the expected estimated

value (E[�̂]) minus the value of � (see Section 2.5). As we have seen above, the .632 bootstrap

estimate is biased for random data and for inducers that are perfect memorizers. In cross-

validation, the induced classi�er is tested on instances that are disjoint from the instances

used for training, and it does not matter whether the training instances are remembered or

not.

The following example shows that for random label values and a majority inducer, cross-

validation is an unbiased estimator. While the example might seem obvious, the exact

analysis is helpful in understanding the problems inherent in cross-validation. Speci�cally,

the discussion that follows may help clarify the problem of large variance and how it is

mitigated by using larger folds (k-fold cross-validation with k � m).

Example 3.2 (Leave-one-out is unbiased for random data and majority)

Suppose the Boolean target concept is random, i.e., the label is independent of the features

and the probability of the label taking value 0 (or 1) is 0.5. We now analyze the leave-

one-out estimated accuracy of a majority inducer (predicting the majority label on the

training set independent of the input feature values). For simplicity, we will assume that

our training set hasm instances, where m is an even number. The mean estimated accuracy

of leave-one-out in this example is:

E[acccv] =
X
D

p(D)acccv(D) :

Since the label is uniformly random, we can partition the sum according to X , the number

of labels with value 1:

E[acccv] =
mX
k=0

p(X = k)acccv(DjX = k)

Because we assumed the training set has an even number of instances, the number of

instances in each class will never be tied once we leave an instance out, and the leave-one-

out estimated accuracy will be k=m if k � m=2+ 1 and (m� k)=k if k � m=2� 1 (k is the

number of instances with label one). As shown in Example 3.1, the estimated accuracy for
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k = m=2 will be zero. Our sum is hence:

E[acccv] =

m=2�1X
k=0

p(X = k)(m� k)=m+ 0 +
mX

k=m=2+1

p(X = k)k=m (3.8)

= 2
m=2�1X
k=0

p(X = k)(m� k)=m Two terms are symmetric (3.9)

=
2

m

X 
m

k

!
0:5m(m� k) Binomial distribution (3.10)

=
2

m

X m

m� k

 
m� 1

m� k � 1

!
(m� k)0:5m (3.11)

= 2
X 

m� 1

m� k � 1

!
0:5m (3.12)

= 2
X

0:5

 
m� 1

k

!
0:5m�1 (3.13)

=

 
m�1X
k=0

 
m� 1

k

!
0:5m�1

!
=2 Add other half of binomial (3.14)

= 0:5 (3.15)

The example shows that cross-validation is unbiased, but it is important to analyze the

estimates derived for a speci�c sample we might get as our training set. For any training set

that is not exactly balanced, the leave-one-out estimate will be optimistically biased; the

more skewed the sample is, the more biased the estimate will be. For exactly one type of

training set|precisely balanced between the two classes|the estimate will be pessimistic

and o� by 50%.

In practice, one is given a single dataset and the accuracy of the induced classi�er needs

to be assessed. If the dataset were given from a random concept as above and a majority

inducer is used, the estimate on a single dataset will be either slightly optimistic or terribly

pessimistic, but never correct. More important, however, is the fact that the estimates have

high variance: di�erent datasets sampled from this distribution will give highly variable

estimates.

If leave-one-out is replaced with k-fold cross-validation for k � m, then the internal

folds might have majority label opposite to that of the complement, hence some estimates

will be greater than 0.5 and others will be less than 0.5; the average accuracy is therefore
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much more likely to be closer to 0.5.

The folds, formed by k-fold cross-validation for a constant k (e.g., ten-fold) and m much

larger than k will have a sampling variance similar to the sampling variance for the whole

dataset we have (Figure 3.1). When k is on the order of m, however, such as in the case of

leave-one-out, we do not test the sensitivity of our results to sampling variations.

For model selection, the bias of the accuracy estimation is less crucial than the variance,

assuming the bias is about the same for both models compared. For example, if the estimate

is o� by some 5%, then it will not a�ect the choice of model we make. As we will show

later, the variance is much harder to deal with than the bias.

3.3 Methodology

The word \valid" would be better dropped from the statistical vocabulary. The
only real validation of a statistical analysis, or of any scienti�c enquiry, is

con�rmation by independent observations.
|Anscombe (1967)

We now describe the experiments conducted in order to empirically compare the various

accuracy estimators. We chose C4.5 and Naive-Bayes to conduct the experiments (see

Section 2.2). Since we are not interested in the induction algorithms themselves, only

in how well the accuracy estimators perform, we used a fast version of Naive-Bayes that

assumes a Gaussian distribution for continuous features (as opposed to one that discretizes

the continuous features). We hope that the di�erent hypothesis spaces|decision trees

for C4.5 and summary statistics for Naive-Bayes|are di�erent enough so that our results

should be of a general nature and apply to other induction algorithms. On real-world

datasets, neither algorithm dominates the other; there are datasets for which C4.5 is more

accurate and vice-versa.

The target concepts are unknown for real-world datasets, so we used the holdout method

to estimate the quality of the cross-validation and bootstrap estimates. To choose a set

of datasets, we looked at the learning curves for C4.5 and Naive-Bayes for most of the

supervised classi�cation datasets at the UC Irvine repository (Murphy & Aha 1995) that

contained more than 500 instances (about 25 such datasets). To ensure little variance, we

chose datasets with at least 500 instances for testing. Note that even with 500 instances

for testing, a holdout estimate can have a standard deviation of
p
:5 � (1� :5)=500 � 2:2%

if the accuracy is 50%. While the true accuracies of a real dataset cannot be computed
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Dataset no. of sample-size no. of duplicate C4.5 Naive-Bayes
ftrs. / total size categories instances

breast cancer 10 50/699 2 8 91.37�0.10 94.22�0.10
chess 36 900/3196 2 0 98.19�0.03 86.80�0.07
hypothyroid 25 400/3163 2 77 98.52�0.03 97.63�0.02
mushroom 22 800/8124 2 0 99.36�0.02 94.54�0.03
soybean large 35 100/683 19 52 70.49�0.22 79.76�0.14
vehicle 18 100/846 4 0 60.11�0.16 46.80�0.16
rand 20 100/3000 2 9 49.96�0.04 49.90�0.04

Table 3.1: True accuracy estimates for the datasets using C4.5 and Naive-Bayes classi�ers
at the chosen sample sizes. The \Duplicate instances" column indicates the number of
instances that are duplicates in the complete dataset.

because we do not know the target concept, we can estimate the true accuracies using the

holdout method. The \true" accuracy estimates in Table 3.1 were computed by taking a

random sample (without replacement) of the given size, computing the accuracy using the

rest of the dataset as a test set, and repeating 500 times.2

We chose six datasets from a wide variety of domains, such that the learning curve for

both algorithms did not atten out too early, that is, before one hundred instances. We also

added a no information dataset, Rand, with 20 Boolean features and a Boolean random

label. Figure 3.2 shows the learning curves for the chosen datasets. Each data point is the

mean accuracy of the classi�er on the instances not used in the training set, averaged over

20 runs; the error bars indicate a 95% con�dence interval for the mean.

On one dataset, vehicle, the generalization accuracy of the Naive-Bayes algorithm de-

teriorated by more than 4% as more instances were given. A similar phenomenon was

observed on the shuttle dataset (not shown). Such a phenomenon was predicted by Scha�er

and Wolpert (Scha�er 1994, Wolpert 1994b), but we were surprised that it was observed

on two real-world datasets. Figure 3.3 shows a plot of the \circularity" feature versus la-

bel value two in the vehicle dataset. The distribution is approximately bimodal, and thus

violates the normality assumption made by Naive-Bayes. As more instances are given to

the inducer, the single mean|right between the two humps|is computed more accurately,

2An alternative view of this procedure is that the instances de�ne the true distribution where each
instance has probability 1=m. In this case, our test sets represent the exact out-of-sample accuracy of each
classi�er.
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Figure 3.2: The learning curves for C4.5 and Naive-Bayes (NB). The x-axis shows the
training set size and the y-axis shows the accuracy on the dataset instances not used during
training. Each point is an average of 20 runs, with error bars indicating the 95% con�dence
intervals for the mean accuracy. Arrows show the points we chose for accuracy estimation.
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Figure 3.3: The distribution of the \circularity" feature and label value two. The normality
assumption made by Naive-Bayes is wrong and becomes worse as enough instances are seen
to estimate the mean at 45.5 accurately.

and the classi�cations then become worse.

Recently, Wolpert and Scha�er (Wolpert 1994a, Wolpert 1994b, Scha�er 1994) have

advocated the use of o�-training set error for testing. They suggested removing test-set

instances that appeared in the training set, ignoring the label for those instances. (Our

experiments allow for such test set instances if there are duplicate instances in the data.)

Our experiments do not speci�cally remove such instances because we are interested in

future expected accuracy, not generalization accuracy. Moreover, the datasets such as those

tested here have very few duplicate instances and thus the results should be approximately

the same. Table 3.1 shows the number of duplicate instances in each of the datasets used.

To see how well an accuracy estimation method performs, we sampled instances from

the dataset (uniformly without replacement), and created a training set of the desired size.
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We then ran the induction algorithm on the training set and tested the classi�er on the

rest of the instances in the dataset. This process was repeated 50 times at points where the

learning curve was not at. The motivation for these sampling points is that the di�erences

in accuracy estimation should be ampli�ed: if the learning curve is at, ine�cient use of

the data might not show up. To allow comparisons between the two algorithms, the same

folds in cross-validation and the same samples in bootstrap were used for both C4.5 and

the Naive-Bayes.

3.4 The Bias and Variance of Cross-Validation and Boot-

strap

It cannot be emphasized enough that no claim whatsoever is being made in this
paper that all algorithms are equivalent in practice, in the real world. In

particular, no claim is being made that one should not use cross-validation in
the real world.

|Wolpert (1994a)

We now show our experimental results and discuss their signi�cance. We begin with a

discussion of the bias in the estimation methods and follow with a discussion of the variance.

While an unbiased method is important to estimate future performance, the large variations

in the results may deem an unbiased method inferior to a biased one with lower variance.

When accuracy estimation is used for model selection, such as selecting the right amount of

pruning for a decision tree (Breiman et al. 1984) or early stopping for neural nets (Finno�,

Hergert & Zimmermann 1993), we are interested in the di�erence between two classi�ers,

and the variance may be even more important because if the bias for the two models is

equal, they cancel out.

3.4.1 The Bias

In this section, we investigate the bias of cross-validation and the .632 bootstrap. Since

both methods estimate the accuracy by training the inducer on smaller samples from the

dataset, we expect the estimates to be pessimistic (i.e., lower accuracy, higher error).

The Bias of Cross-Validation

Figures 3.4 and 3.5 show the bias and variance of k-fold cross-validation on several datasets

(the breast cancer dataset is not shown because it crosses the others and makes the graphs
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unreadable). Positive values on the x-axis indicate the number of folds; negative numbers

indicate leave-k-out (e.g., �2 stands for leave-two-out repeated m=2 times). The gray area

indicates the 95% con�dence interval for the true accuracy.

The diagrams clearly show that k-fold cross-validation is pessimistically biased, espe-

cially for two and �ve folds. For the learning curves that have a large derivative at the

measurement point, the pessimism in k-fold cross-validation for small k's is apparent. For

example, on the learning curve for C4.5, Soybean is about 3% lower in accuracy when go-

ing down from 100 training instances to 90, and the cross-validation estimate is therefore

highly pessimistic even at ten folds. Most of the estimates are reasonably good at ten

folds, and at twenty folds they are almost unbiased. In fact, almost no noticeable di�erence

can be observed between twenty folds and leave-�ve-out for mushroom, hypothyroid, and

chess (soybean, vehicle, and rand were tested at 100 instances, so 20-fold cross-validation

is equivalent to leave-�ve-out).

Results for strati�ed cross-validation (Figures 3.6 and 3.7) are similar, except for lower

pessimism. The estimated accuracy for soybean at two-fold was 7% higher and at �ve-fold,

it was 4.7% higher; for vehicle at two-fold, the accuracy was 2.8% higher and at �ve-fold,

1.9% higher. Thus strati�cation seems to be a less biased estimation method.

An Alternative View of the Cross-Validation Bias

Cross-validation can be viewed as an unbiased estimator for the size of the internal training

sets used; thus k-fold cross-validation is an unbiased estimator for datasets of size m �
m=k. (This does not mean that cross-validation is unbiased for a speci�c given dataset, as

Example 3.1 on page 44 shows, only that it is unbiased if we average all possible datasets.)

In strati�ed cross-validation, the test samples|and hence the training samples|are

constrained to contain approximately the same proportion of the class labels as in the

dataset. Strati�cation reduces the variance of the estimates because of the extra constraint

on the class proportions (conditioning reduces variance). If background knowledge indicates

that the dataset was strati�ed, i.e., each class was sampled in proportion to its probability

in the domain (these probabilities should be known based on background knowledge), then

strati�ed cross-validation is clearly the correct choice, as we condition on something that is

true. However, if no such knowledge exists, it is not clear that strati�cation is the correct

thing to do.

The following experiments compare the cross-validation estimates with the accuracies
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Figure 3.4: C4.5: The bias of cross-validation with varying folds. A negative k folds stands
for leave-k-out. Error bars are 95% con�dence intervals for the mean. The gray regions
indicate 95% con�dence intervals for the true accuracies. Note the di�erent ranges for the
accuracy axis and the di�erence in scale.
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Figure 3.5: Naive-Bayes: The bias of cross-validation with varying folds.

of an inducer trained on datasets of size m�m=k. The \true" accuracies shown for samples

of size m �m=k are derived from sampling the original dataset (without replacement and

without strati�cation). If cross-validation is an unbiased estimator for size m�m=k, then

the results should be approximately equal. Figure 3.8 shows the di�erence in accuracies

between the \true" accuracy and the cross-validation estimated accuracy. For each sample,

we ran cross-validation and strati�ed cross-validation with the speci�ed number of folds

�ve times (running cross-validation �ve times is a better approximation to complete cross-

validation; see Section 3.5 on page 59). Figures 3.8 and 3.9 show the di�erences in accuracy

(note the di�erent scale). Cross-validation has no signi�cant bias, while strati�ed cross-

validation is optimistically biased.

When strati�ed cross-validation is compared as an accuracy estimator for the given
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Figure 3.6: C4.5: The bias of strati�ed cross-validation with varying folds.
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Figure 3.7: Naive-Bayes: The bias of strati�ed cross-validation with varying folds.

dataset (as opposed to a dataset of size m�m=k), then the pessimism of the small training

set size is o�set by the optimism of strati�ed cross-validation, leading to a less biased

estimate. While there is no good theoretical justi�cation for adding this level of optimism,

it just seems to work well in practice.

The Bias of the .632 Bootstrap

Figures 3.10 and 3.11 show the bias and variance for the .632 bootstrap accuracy es-

timation method. Although the .632 bootstrap is almost unbiased for chess, hypothyroid,

and mushroom for both inducers, it is highly biased for soybean with C4.5, vehicle with

both inducers, and rand with both inducers. The bias with C4.5 and vehicle is 9.8%.

It is interesting to note that the bias of the .632 bootstrap is high for low-accuracy

datasets. This observation suggests that an alternative bootstrap might change the weights

of the �0 and the resubstitution estimates (currently set to .632 and .318 correspondingly)
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Figure 3.8: The bias of cross-validation for dataset of size m �m=k is almost 0 (note the
scale).
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Figure 3.9: The bias of strati�ed cross-validation for dataset of size m�m=k. The optimistic
bias is signi�cant (note the scale).

based on the value of �0. See Section 3.8 on page 73 for more details.

Because the bias of the .632 bootstrap is so high, it is not a good estimator of accuracy

for the datasets and inducers we tested. For model selection, the absolute accuracy is less

important, but because the di�erence in the bias is very di�erent between C4.5 and Naive-

Bayes, it would not cancel out if the accuracy estimates are subtracted, and so we would

not recommend the .632 bootstrap for model selection either.

3.4.2 The Variance

While a given method may have low bias, its performance (accuracy estimation in our

case) may be poor due to high variance (see Section 2.5 for the bias-variance tradeo�).

Researchers who do not have practical experience with accuracy estimation methods are

often surprised by the large variance exhibited by these methods. In the experiments above,
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Figure 3.10: C4.5: The bias of bootstrap with varying samples. Estimates are good for
mushroom, hypothyroid, and chess, but are extremely biased (optimistically) for vehicle
and rand, and somewhat biased for soybean.
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Figure 3.11: Naive-Bayes: The bias of bootstrap with varying samples. Estimates are good
for mushroom, hypothyroid, and chess, but are extremely biased (optimistically) for vehicle
and rand.

we have formed con�dence intervals by using the standard deviation of the mean accuracy.

We now switch to the standard deviation of the population, i.e., the expected standard

deviation of a single accuracy estimation run (the expectation is over the sample training-

set and the cross-validation partition). In practice, if one does a single cross-validation run,

the expected accuracy will be the mean reported above, but the standard deviation will be

higher by a factor of
p
50, the number of runs we averaged in the experiments.

In what follows, all �gures for standard deviation will be drawn with the same range for

the standard deviation: 0 to 7.5%. Figure 3.12 shows the standard deviations for C4.5 and

Naive Bayes using varying number of folds for cross-validation; Figure 3.13 shows the same

information for strati�ed cross-validation (leave-one-out is not shown because it is exactly
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the same as for regular cross-validation); and Figure 3.14 shows the same information for

the .632 bootstrap.

Cross-validation has high variance at two-folds with both C4.5 and Naive-Bayes. With

C4.5, there is high variance at the high-ends too|at leave-one-out and leave-two-out|for

three �les out of the seven datasets. Strati�cation reduces the variance slightly, and thus

seems to be uniformly better than cross-validation, both for bias and variance. The .632

bootstrap clearly has the smallest variance, but as we shall see in the next section, similar

reductions in variance can be achieved for cross-validation by executing multiple runs.

3.5 Stabilizing Cross-Validation

It would be illogical to assume that all conditions remain stable.
|Spock, "The Enterprise Incident," stardate 5027.3

The bias of cross-validation can be reduced by increasing the number of folds, but increasing

it too much may increase the variance. Even for the optimum number of folds chosen to

reduce variance, the variance may be much too high to be useful. We now describe two

variations of cross-validation aimed at reducing the variance: multiple runs and trimming.

3.5.1 Multiple Runs of Cross-Validation

Complete cross-validation is the average of all
� m
m=k

�
possibilities for choosing m=k instances

out of m. The cross-validation estimate commonly used chooses a single split of the data

into k folds, thus approximating complete k-fold cross-validation with k estimates having

disjoint test sets. Executing cross-validation multiple times, each time with a di�erent split

into the k folds, can viewed as a Monte-Carlo estimation (Binder & Heerman 1988) to

complete k-fold cross-validation, which is usually too expensive to run.3 Repeating cross-

validation multiple times will not change the bias inherent in the method but it might

change the variance of the estimates.

3One reviewer asked if we ever tried running complete cross-validation to show that it is better for our
datasets. For the chess dataset, one would need to run the induction algorithm

�
900
90

�
times. If every one

of the 1080 atoms in this universe were replaced by a machine a million times faster than the Sparc 10 we
used, and assuming C4.5 were optimized to be a million times faster, one would still need 1025 years, which
we believe would miss some important deadlines.
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Figure 3.12: Cross-validation: standard deviation of accuracy (population). Di�erent line
styles are used to help di�erentiate between curves.
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Figure 3.13: Strati�ed cross-validation: standard deviation of accuracy (population).
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Figure 3.14: The .632 Bootstrap: standard deviation of accuracy (population).
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Figure 3.15: C4.5 cross-validation repeated �ve times: standard deviation of accuracy (pop-
ulation).
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Figure 3.16: Naive-Bayes cross-validation repeated �ve times: standard deviation of accu-
racy (population).

Figures 3.15 and 3.16 show the variance of the cross-validation estimates when �ve

cross-validation runs are made for the given number of folds. The emerging picture is quite

di�erent from that of running cross-validation a single time (Figures 3.12 and 3.13). Two-

fold cross-validation has the lowest variance, and strati�cation does not seem to help as

much.

Figures 3.17 to 3.20 show the variance of two-fold and ten-fold, with and without strati�-

cation, for varying times. One can see that signi�cant decreases in variance can be achieved

as the number of repetitions goes up to about 20. Comparing two-fold cross-validation with

the .632 bootstrap shows that they have very similar variance. The advantage of cross-

validation is that it allows choosing the number of folds to achieve a balance between the

desired bias and variance.
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Figure 3.17: C4.5 with two-fold cross-validation : regular (left), strati�ed (right) with
varying times.
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Figure 3.18: Naive-Bayes with two-fold cross-validation : regular (left), strati�ed (right)
with varying times.

3.5.2 Cross-Validation: the Distribution and Trimming of the Folds

The property of robustness I believe to be even more important in practice than
that the test should have maximum power and that the statistics employed

should be fully e�cient.
|G. E. P. Box, 1953

John (1994) and Walker (1992) suggested using a trimmed mean to reduce the variance

of cross-validation. An �-trimmed mean ignores the 100� extreme data points (high-

est and lowest) when computing the mean (details below). The argument is that some

cross-validation folds are unrepresentative because they contain only 1=k of the instances.

Trimmed means are known to have good properties: they are robust to outliers up to 100�%,

their asymptotic e�ciency relative to the untrimmed mean never drops below (1 � 2�)2,

and the standard errors can be estimated easily (Staudte & Sheather 1990, Rice 1988).
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Figure 3.19: C4.5 with ten-fold cross-validation : regular (left), strati�ed (right) with vary-
ing times.
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Figure 3.20: Naive-Bayes with ten-fold cross-validation : regular (left), strati�ed (right)
with varying times.

In order to evaluate this suggestion and similar ones, it is useful to look at the dis-

tribution of cross-validation. Figure 3.21 shows the distribution of 1,000 cross-validation

estimates with C4.5 (the �gures for Naive-Bayes are similar in nature), accumulated by

doing 20 times ten-fold cross-validation for each of the 50 samples from the original dataset.

The histograms show that the cross-validation estimates are approximately normally dis-

tributed, but they are not very smooth.4 Figure 3.22 shows the distribution of the 10,000

fold estimates (20 times ten-fold cross-validation, repeated for each of the 50 samples) and

reveals one reason for the non-smoothness: few test instances in each fold. With only 50

instances for the breast cancer dataset, each fold contains only �ve instances, hence the

4The binning was determined automatically by S-plus (Spector 1994). While these histograms could be
made to look more Gaussian by changing the bin sizes, the histograms shown are more informative because
they indicate important gaps in the accuracy estimates.
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Figure 3.21: C4.5: Distribution for the cross-validation accuracies in 20 times ten-fold
cross-validation (repeated 50 times)
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Figure 3.22: C4.5: The distribution for the fold accuracies in 20 times ten-fold cross-
validation (repeated 50 times)
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accuracy must be a multiple of 20%. Even for Hypothyroid, with 400 instances, the non-

smoothness is apparent, although at a di�erent scale. The accuracy can be made smoother if

the predictions were probabilistic, i.e., the classi�er would return a probability distribution.

This idea is discussed in Section 3.8 on page 73.

Apart from the problem of discrete classi�cation just mentioned, the breast-cancer, the

chess, the hypothyroid, and the mushroom datasets have a skewed distribution because an

accuracy of 100% is an upper limit and the folds do not form a symmetric distribution

around the mean. If the underlying distribution is Gaussian, then the sample mean is the

minimizer of the sum of squared error from the true mean. Some studies show that for

heavy tails, trimmed means are better, and the variance of the estimates is not much larger

than the ordinary mean even if the underlying distribution is Gaussian (Andrews, Bickel,

Hampel, Huber, Rogers & Tukey 1972). In the following experiment, we evaluate the use

of a trimmed mean.

We experimented with two-fold and ten-fold cross-validation for both C4.5 and Naive-

Bayes using an � = 10% trimmed mean. Our trimmed mean removed the extreme b�nc
points, so for two-fold cross-validation, trimming kicks in only when there are �ve repetitions

(at least ten folds are needed). (Andrews et al. (1972) and Hoaglin, Mosteller & Tukey

(1983) suggest weighting the remaining points with a weight of 1 + b�nc � �n and then

taking a weighted mean, but we have not tried this procedure.) The formula in Rice (1988)

(page 333) was used to compute the variance of a trimmed mean. The variance is not

signi�cantly di�erent and the estimates are slightly optimistic compared to the untrimmed

variants. For example, the accuracy di�erences between 20 times two-fold cross-validation

with 10% trimmed mean and the untrimmed mean for the seven datasets were 0.64%, 0.07%,

0.09%, 0.01%, 0.21%, 0.15%, 0.01%. For 20 times ten-fold cross-validation the di�erences

were 1.75%, 0.15%, 0.3%, 0.18%, 0.43%, 0.26%, -0.02%. Except for the random datasets,

all results were still pessimistically biased. Figures 3.23 and 3.24 show the variance of cross-

validation with 10% trimming for two and ten-fold cross-validation. Trimming slightly

reduces the bias, but not the variance. The di�erences are generally very small.

3.6 Learning-curve Extrapolation

NULL HYPOTHESIS: The type of hypothesis used by a pessimist.
|Unix fortune

The pessimistic bias of cross-validation is the result of training the induction algorithm
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Figure 3.23: C4.5: cross-validation with 10% trimming: two-fold (left), ten-fold (right).
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Figure 3.24: Naive-Bayes: cross-validation with 10% trimming: two-fold (left), ten-fold
(right).

on fewer instances than there are in the entire dataset. To correct for this bias, we �rst

assume that the pessimism is only a function of the induction algorithm and the number of

training instances used. We attempt to approximate this function and extrapolate its value

for the number of instances in the full dataset. While extrapolation in general is unstable,

we extrapolate close to the sampled region and thus do not introduce much variance. The

function we approximate is the learning curve, which relates the training set size to the true

accuracy.

Cortes, Jackel, Solla, Vapnik & Denker (1994) have also extrapolated the learning curve

(see Section 3.7 on page 69), but with a di�erent motivation in mind. They sought to avoid

training inducers on large amounts of data before inferring that one is superior. Training

inducers on large amounts of data requires large amounts of resources that are unlikely to

be available if many inducers are to be explored (see Kohavi & John (1995) for an example
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Figure 3.25: The bias corrected learning-curve �t to the data at ten points.

Dataset sample-size C4.5 C4.5 bias corrected Naive-Bayes NB bias corrected
total size True estimate True estimate

Breast cancer 50/699 91.37�0.10 91.54�0.53 94.22�0.10 94.33�0.41
Chess 900/3196 98.19�0.03 98.44�0.08 86.80�0.07 87.11�0.18
Hypothyroid 400/3163 98.52�0.03 98.45�0.10 97.63�0.02 97.70�0.10
Mushroom 800/8124 99.36�0.02 99.37�0.05 94.54�0.03 94.57�0.08
Soybean large 100/683 70.49�0.22 69.15�0.77 79.76�0.14 79.61�0.61
Vehicle 100/846 60.11�0.16 59.54�0.81 46.80�0.16 48.77�0.64
Rand 100/3000 49.96�0.04 50.40�0.66 49.90�0.04 50.29�0.93
Average 81.14 80.98 78.52 78.91

Table 3.2: True and bias-corrected ten-fold cross-validation estimates.

where this line of work can be extremely useful).

Stone (1982) showed that under appropriate regularity conditions, the learning curves

of non-parametric regression algorithms behave as 1 � m�� where m is the number of

instances and � is a constant that depends on the dataset and the learning algorithm.

Haussler (1992) proved that samples of size m = M2

2�2

�
ln jHj+ ln 2

�

�
su�ce to probably

approximately correctly learn in the agnostic PAC model (where the target function is non-

negative and M is an upper bound on the loss function), giving another justi�cation for

the m�� model. We thus approximate the learning curve of an algorithm by a parametric

curve of the form a+ b �m�� where a; b; � are parameters to be determined by the dataset

and the induction algorithm. Experimental evaluations on over twenty datasets from UC

Irvine indicate that the family is quite general and gives a good �t to the learning curves

of several algorithms on di�erent datasets.

Our estimation process samples points from the learning curve using ten-fold cross-

validation. A standard run of ten-fold cross-validation gives us the 90% sample point; other
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Dataset 5x2-fold 5x5-fold 5x10-fold 5x20-fold Bias-corrected

Breast cancer 4.14 4.05 4.14 4.61 3.69
Chess 0.55 0.70 0.55 0.53 0.64
Hypothyroid 0.75 0.75 0.77 0.78 0.72
Mushroom 0.41 0.44 0.41 0.42 0.32
Soybean large 5.45 6.38 5.45 5.68 5.57
Vehicle 5.18 4.99 5.11 5.57 5.69
Rand 4.01 3.60 4.38 4.96 4.65

Table 3.3: Comparison of root mean square error (RMSE) for �ve times cross-validation
with the indicated number of folds and of the bias-corrected cross-validation.

points are computed by shrinking the training set sizes from the ten-fold cross-validation,

keeping the test sets �xed. Speci�cally, we generate ten points, using 10% to 90% of the

training sets determined by ten-fold cross-validation. The reason for keeping the test sets

�xed is to avoid variance that arises from the shu�ing in cross-validation.

The curve is �tted using Levenberg Marquardt non-linear least squares with starting

values of a = b = 0:5 and � = 0:01 (Marquardt 1963, Press, Teukolsky, Vetterling &

Flannery 1992). These values were determined by looking at a few learning curves; we do

not attribute any great signi�cance to the starting point. After the curve is �tted, the

accuracy performance is estimated by plugging in the full dataset size. Table 3.2 shows

the estimated accuracies for the C4.5 and the Naive-Bayes induction algorithms after this

extrapolation, which we call bias correction.

The root mean square error (the di�erence was taken between the estimate and the true

error) is shown in Table 3.3. The bias correction run using ten samples of ten-fold cross-

validation outperformed �ve times twenty-fold cross-validation in terms of root mean square

(both require the same number of cross-validation folds). The bias-corrected method seems

to be almost unbiased and not less stable than ten times ten-fold cross-validation. Fig-

ure 3.25 shows the �t to the ten estimated points for two datasets that generated distinctly

di�erent learning curves.

3.7 Related Work

I have in mind procedures such as AID, the automatic interactor detector,
which guarantees to get signi�cance out of any data whatsoever.

|G. A. Barnard (Stone 1974, Discussion)

Some experimental studies comparing di�erent accuracy estimation methods have been
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previously reported, but most of them were on arti�cial or small datasets. We now describe

some of these e�orts.

Lachenbruch & Mickey (1968) conducted some experiments and compared leave-one-out

with holdout estimation and resubstitution estimation. The concluded that \no one method

is uniformly best for all situations," but that the resubstitution estimate is relatively poor.

Stone (1974) suggested the use of cross-validation both for choosing a predictor and

assessing its quality. He looked at examples for the areas of univariate estimation, linear

regression, and analysis of variance, and showed that prescriptions of parameters made

by cross-validation agree with some analytical results on arti�cial distributions. He also

demonstrated the use of cross-validation for estimating the accuracy of a weighted least-

squares �t to a satellite dataset with 27 instances. A few years later (Stone 1977), he

showed that estimating parameters by leave-one-out cross-validation leads to asymptotically

inconsistent estimates in some cases, such as deciding whether to estimate a parameter by

the median or the mean.

Geisser (1975) apparently discovered cross-validation independently of Stone and used

the name \sample reuse." He noted that although k-fold cross-validation is pessimistic

(conservative in his terms), some conservativeness may be o�set due to repeated optimiza-

tions on much of the same data. The problem of overusing the accuracy estimation may be

severe especially if the datasets are small (see Section 4.7 on page 114).

Efron (1983) conducted �ve sampling experiments and compared leave-one-out cross-

validation, several variants of bootstrap, and several other methods. The purpose of the

experiments was to \investigate some related estimators, which seem to o�er considerably

improved estimation in small samples." Four experiments were based on bivariate normal

distributions with two to �ve features and 14 to 20 instances; the �fth experiment was based

on a real world dataset described in Gong (1982) with 4 features and 20 instances. The

results indicate that leave-one-out cross-validation gives nearly unbiased estimates of the

accuracy but often with unacceptably high variability, particularly for small samples; the

.632 bootstrap performed best.

Breiman et al. (1984) conducted experiments using cross-validation for decision tree

pruning. They chose ten-fold cross-validation for the CART program and claimed it was

satisfactory for choosing the correct tree. They also claimed that \the di�erence in the

cross-validation estimates of the risks [accuracy here] of two rules tends to be much more

accurate than the two estimates themselves."
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Knoke (1986) provided a survey of error estimation of classi�cation rules, but he assumed

that classi�cation is based on linear discriminant functions. Because the asymptotic bias of

the resubstitution estimate is on the order of 1=m (McLachlan 1976) for linear discriminant

functions, he concluded that \for large samples, there is no need to look further than the

resubstitution estimator when seeking a robust method."

Jain et al. (1987) compared the performance of the �0 bootstrap and leave-one-out

cross-validation with nearest-neighbor classi�ers using arti�cial data and claimed that the

con�dence interval of the bootstrap estimator is smaller than that of leave-one-out. Weiss

(1991) followed similar lines and compared strati�ed cross-validation and two bootstrap

methods with nearest-neighbor classi�ers. His results indicated that strati�ed two-fold

cross-validation has relatively low variance and is superior to leave-one-out. A corrected

leave-one-out estimator was suggested that is equal to either the .632 bootstrap or two-fold

cross-validation, depending on the relation between them and leave-one-out. The experi-

ment was conducted on one real-world dataset (hypothyroid) and three arti�cial datasets

with two features. Samples of sizes 20 and 60 were used, but the conclusions from samples

of size 20 seemed less clear for those of size 60. Weiss wrote that \the variance of leaving-

one-out is most evident with very small samples such as size 20, and gradually lessens as

the sample size increases."

Weiss (1991) writes that strati�ed two-fold cross-validation is a relatively low variance

estimator (the experiments show root mean square error from the true error rate), but then

wrote that two-fold cross-validation was weaker than leaving-one-out for low true error

rates. The variance was reduced su�ciently for the bias of two-fold cross-validation to be

visible.

Crawford (1989) discusses the .632 bootstrap as an alternative method for pruning

decision trees. His experiments were done on small arti�cial datasets and he claims that as

the sample size is reduced to 20, the large variance in the cross-validation takes its toll, and

the .632 bootstrap clearly outperforms cross-validation.

Breiman & Spector (1992) conducted a feature subset selection experiment for regression

and compared leave-one-out cross-validation, k-fold cross-validation for various k, strati�ed

k-fold cross-validation, bias-corrected bootstrap, and partial cross-validation (not discussed

here). Tests were done on arti�cial datasets with 60 and 160 instances using multivariate

mean-zero normal or lognormal distributions with 40 coe�cients (features), but only 3 to

21 were non-zero. The behavior observed was:
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1. Leave-one-out has uniformly low bias and RMS (root mean square) error. Five-fold

cross-validation and two-fold cross-validation have larger bias and RMS error at the

larger submodels, i.e., models with many features.

2. For 60 instances, ten-fold cross-validation is biased pessimistically with larger RMS

error at the higher dimensional submodels. This bias is considerably reduced for

samples of size 160.

3. The bias-corrected bootstrap has a fairly low bias and RMS error for samples of

size 160. With 40 features, bootstrap could not be run on the samples of size 60

because there were only about :632 � 60 = 37:92 unique instances in the bootstrap

samples, implying that the regression matrix XTX was singular most of the time.

The di�erences between 20 and 50 bootstrap samples were small.

4. Strati�cation did not seem to have any e�ect on cross-validation.

5. For selecting the correct model, ten-fold cross-validation was uniformly better than

leave-one-out. On samples of size 160, the bias-corrected bootstrap had a slight edge.

Although �ve-fold cross-validation is not as good an estimator globally (i.e., for ac-

curacy estimation) as ten-fold cross-validation, it does as well on submodel selection

and evaluation. Similarly, for submodel selection, the accuracy holds up even for as

few as �ve bootstrap samples.

Bailey & Elkan (1993) compared leave-one-out cross-validation to the .632 bootstrap

using the FOIL inducer and four synthetic datasets involving Boolean concepts in DNF

using 50 Boolean features with four to eight relevant ones. The number of training instances

was 100 with 50 instances of each class (strati�ed sample). They observed high variability

and little bias in the leave-one-out estimates, and low variability but large bias in the .632

estimates.

Weiss and Indurkyha (Weiss & Indurkhya 1994b, Weiss & Indurkhya 1994a) conducted

experiments on real-world data to determine the applicability of cross-validation to decision

tree pruning. Their results were that for samples of size at least 200, using strati�ed ten-

fold cross-validation to choose the amount of pruning yields unbiased trees (with respect to

their optimal size). For smaller samples, they found that while ten-fold is nearly unbiased,

a strategy based on two-fold cross-validation is generally more e�ective.
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Zhang (1992b) and Shao (1993) showed that in order to select a linear model containing

the best set of features, as m grows, the number of instances held for testing (i.e., not given

in the training set) should grow too. Zhang showed that the models chosen by any k-fold

cross-validation for any k will over�t in the sense that too many features will be selected.

However, for moderately-sized data sets, he claims that ten to �fteen folds are reasonable

choices.

Cortes et al. (1994) also extrapolated the learning curve, but using a di�erent model.

Their model assumed that the shape of the error curve for the resubstitution error is a�b=m�

for some constants a, b, and �, and that the shape of the error curve for the true error (one

minus the learning curve as de�ned here) is a + b=m� (for the same a, b, and � as in

the resubstitution error curve). This model was motivated by statistical mechanics and

validated on Boolean classi�ers with linear decision surfaces. It seems to work well for

neural networks, but the model is bad for many known induction algorithms (e.g., the

resubstitution curve for one nearest-neighbor is a constant zero in noiseless domains).

Kadie (1995) and Kadie &Wilkins (to appear) have modeled the shape of learning curves

in a system called Seer. They �t two models, called EDit and Burr, that are motivated

by computational learning theory. The EDit model is based on the upper bound on the

number of instances needed to learn a hypothesis with a given VC dimension (Shawe-Taylor,

Anthony & Biggs 1993); the Burr model is similar in shape, but simpler. Both models are

modi�ed to account for the roughness of the learning curve by a noise term that has a

beta distribution. Parameters for the model were found by �tting the curve using the

Levenberg-Marquardt nonlinear optimization (Marquardt 1963, Press et al. 1992).

3.8 Future Work

Future, n. That period of time in which our a�airs prosper, our friends are
true, and our happiness is assured.

|The Cynic's Word Book, Bickersteth

The work presented in Kohavi (1995b), which was the basis for this chapter, renewed the

interest of Efron and Tibshirani in the subject of accuracy estimation using bootstrap.

They have recently proposed a modi�ed rule, called the 632+ rule (Efron & Tibshirani

1995), which attempts to correct for the bias exhibited in Figures 3.10 and 3.11 by changing

the .632 factor based on the �0 estimated accuracy. The new rule also works for perfect

memorizers and random data, where the .632 bootstrap fails. Since the new rule was
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somewhat motivated by the datasets reported here, it would be unfair to compare it for

these datasets and a new set would need to be chosen.

We have addressed issues of bias and variance separately. These are two separate num-

bers that we feel are more important than a single report of the root mean squared error

(RMSE). Speci�cally, for model selection the variance is more important if the bias is the

same for the algorithms compared. More research should be done to compare the accuracy

estimation methods estimates for the di�erence between models.

In the alternative view of cross-validation (Section 3.4.1), model selection using k-fold

cross-validation will select the estimated best algorithm for which performance is best for

m �m=k instances. Unless the learning curves cross from m �m=k instances to m, then

the choice will be correct. There have been some recent results indicating the occurrence

of phase transitions (i.e., a sudden large increase in accuracy) in learning curves of speci�c

learning algorithms (Haussler, Kearns, Seung & Tishby 1994, Hertz, Krogh & Thorbergsson

1989, O'Kane 1994). In practice, we have not seen a phase transition using the C4.5 or

Naive-Bayes algorithms on any of the datasets in the UC Irvine repository (Murphy & Aha

1995); however, if they do occur between datasets of sizes m�m=k and m, they are likely

to cause the learning curves to cross, and hence the wrong model will be selected.

Devijver & Kittler (1982, Chapter 10) show that for a nearest-neighbor classi�er, using

the probability distribution over classes instead of the majority of the nearest neighbors

provably reduces the expected variance of the estimated accuracy (note that this is a dif-

ferent estimate of the accuracy because the loss function is not 0/1). Glick (1978) makes

similar claims and attempts to smooth counting estimators. Classi�ers that can produce

probability distributions for the classes can be used in this manner. To our knowledge, such

second-generation accuracy estimators have not been explored experimentally, although

they seem to be a promising approach (see also Section 3.5.2 on page 62).

3.9 Summary

The Guide is de�nitive. Reality is frequently inaccurate.
|Douglas Adams, The Hitchhiker's Guide to the Galaxy.

We reviewed common accuracy estimation methods: holdout, cross-validation, and the

.632 bootstrap. We showed examples where each one fails to produce a good estimate

and compared the latter two approaches on a variety of real-world datasets with di�ering
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characteristics. We used about 15 Sparc 20s to run this experiment, which included over a

million runs of C4.5 and the Naive-Bayes algorithm. An experiment of this scale could not

have been done a few years ago.

Proposition 1 on page 43 shows that if the induction algorithm is stable for a given

dataset, the variance of the cross-validation estimates should be approximately the same,

independent of the number of folds. Although the induction algorithms are not stable,

they are approximately stable for a reasonable number of folds. k-fold cross-validation with

moderate k values (10-20) reduces the variance while increasing the bias. As k decreases (2-

5) and the sample sizes get smaller, there is variance due to the instability of the training

sets themselves, leading to an increase in variance. This variance is most apparent for

datasets with many categories, such as soybean. In these situations, strati�cation seems to

help. Repeated cross-validation runs change the picture for k � 10. For �ve repetitions, it is

no longer the case that the variance increases as k decreases, in fact, the variance decreases.

We conclude that repeated cross-validation runs seem to be very useful when the number

of folds is small.

Our results indicate that the .632 bootstrap has low variance, but extremely large bias on

some problems. Strati�ed cross-validation is better than ordinary cross-validation both in

terms of bias and variance; however, strati�cation yields an optimistic accuracy estimators

for the amount of data used in training. Trimming seems to be of little help in reducing the

variance, and the problem of discrete accuracy estimation resulting form the use of zero-

one loss are apparent in the �gures showing the distribution. Second-generation accuracy

estimation methods that use the probability distributions may mitigate the problem.

Our recommendation is to use strati�ed cross-validation with ten to twenty folds for

accuracy estimation, where the bias is usually more important. For model selection, where

bias is not as crucial, we recommend multiple runs of �ve-fold cross-validation. One ap-

proach, which works well in practice, is to dynamically choose the number of runs based

on the estimated variance of the accuracy: if the variance is high, execute another run of

cross-validation.



Chapter 4

Wrappers

Wrap around: vi. To change phase gradually and continuously by maintaining a
steady wake-sleep cycle somewhat longer than 24 hours, e.g., living six long (28-hour)

days in a week (or, equivalently, sleeping at the rate of 10 microhertz).
|Jargon File, V2.9.9

Users of machine learning algorithms must decide not only which algorithm to use on a

particular dataset, but also what parameter values to use for the chosen algorithm. Some

parameter settings may be set with the help of background knowledge (e.g., prune more

in noisy domains), but often the background knowledge does not translate well into actual

settings. For example, there is no clear understanding as to when one splitting criterion is

superior to another. While the problem of algorithm selection is recognized as an important

issue in machine learning, the problem of �nding the best parameter values has not been

systematically studied. With many parameters possible, the problem cannot be simply

posed as model selection from a few models, but requires an e�cient search in the space

of parameters. One important problem that falls under parameter tuning is that of feature

subset selection: given a dataset with many features, how can we select a \good" subset.

This chapter introduces the wrapper approach to feature subset selection and parameter

tuning. We use feature subset selection to study the strengths and weaknesses of the wrapper

approach and �nd ways to improve the original design. We study the relation between

feature subset selection and relevance, and introduce a new method to dynamically change

the topology of the search space for feature subsets using compound operators. We show

how the wrapper approach can be used to tune parameters for C4.5 and discuss some

problems with the approach.

76
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4.1 Introduction to Wrappers

IT IS IN THE PROCESS: so wrapped up in red tape that
the situation is almost hopeless.

|Glossary of important business terms

Suppose you are given a dataset and the C4.5 induction algorithm. How do you tune its

parameters? The usual approach is simply to ignore them, i.e., simply run the default

settings and pray that Ross Quinlan's default settings are good for your dataset. A better

approach is to use some background knowledge and attempt to set them appropriately, but

this is usually impossible in practice because background knowledge does not easily translate

into parameters. A third approach is to run C4.5 with di�erent settings and estimate the

accuracy of di�erent ones, as suggested in Quinlan (1993). Automating this last approach

for a large number of parameter settings is the topic of this chapter.

In theory, every possible parameter setting creates a di�erent model, so the problem

can be viewed as that of model selection (Linhart & Zucchini 1986). If there are only a

few models, as is the case when one chooses between three induction algorithms, one can

estimate the accuracy of each one and select the one with the highest accuracy (Scha�er

1993) or perhaps even �nd some underlying theory to help predict the best one for a given

dataset (see Brazdil, Gama & Henery (1994) for an attempt that was not very successful in

�nding regularities in the StatLog project). When we attempt to tune multiple parameters,

the space of possible combinations is usually too big for brute-force enumeration of all

possibilities, and we must resort to heuristic search.

The idea behind the wrapper approach, shown in Figure 4.1 is simple: the induction

algorithm is considered as a black box with tunable parameters. The induction algorithm

is run on the dataset, usually partitioned into internal training and test sets, with di�erent

settings of the parameters. The setting with the highest estimated value is chosen as the �nal

parameter set on which to run the induction algorithm. There are two crucial components

to the wrapper approach: a search component and an evaluation component. The search

component repeatedly suggests parameter settings. The evaluation component evaluates

these settings by running the induction algorithm several times and getting an estimate of

our objective function, usually accuracy.

Di�erent search algorithms (engines) are discussed in Section 4.4. The evaluation com-

ponent can be any objective function that takes into account factors such as the accuracy,
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Figure 4.1: The wrapper approach to parameter tuning. The induction algorithm is used
as a black box.

comprehensibility, and others. We assume that our goal is to improve accuracy, and when-

ever there are two models with approximately the same accuracy, we prefer the simpler

one (e.g., less features used). For accuracy estimation, any of the approaches described in

Chapter 3 can be used; based on our experimental results, we use repeated runs of �ve-fold

cross-validation.

Because datasets vary in size, large datasets tend to have good accuracy estimates while

small ones are highly variable. A heuristic we use in all the experiments is to repeat cross-

validation until the standard deviation of the mean of the folds (assuming independence

between folds) is below 1%, or �ve runs of �ve-fold cross-validation have been executed.

Since the folds are not independent, this is only a heuristic, but it seems to work well in

practice.

This heuristic has the nice property that it forces the accuracy estimation to execute

cross-validation more times on small datasets than on large datasets. Because induction

algorithms typically run longer on large datasets, the overall accuracy estimation time,

which is the product of the induction algorithm running time and the number of cross-

validation runs, does not grow too fast. We thus have a conservation of \hardness" using

this heuristic: small datasets will be cross-validated many times to overcome the high

variance resulting from small amounts of data. For much larger datasets, one could switch

to a holdout heuristic to save even more time (a factor of �ve), but we have not found this
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necessary for the datasets we used.

This chapter is organized as follows. In Section 4.2, we review the feature subset selection

problem, investigate the notion of relevance, de�ne the task of �nding optimal features, and

describe the �lter approach. In Section 4.3, we describe the wrapper approach with its

speci�c instantiation and the experimental setup used in later sections. In Section 4.4, we

investigate the search engine used to search for feature subsets and show that greedy search

(hill-climbing) is inferior to best-�rst search. In Section 4.5, we modify the organization of

the search space to improve the running time. Section 4.6 contains a global comparison of

the best methods found. In Section 4.7, we discuss one problem in the approach, over�tting,

and suggest a theoretical model that generalizes the problem in Section 4.8. In Section 4.9,

we apply the wrapper to automatically tune the parameters of C4.5. Related work is given

in Section 4.10, future work is discussed in Section 4.11, and we conclude with a summary

in Section 4.12.

4.2 Feature Subset Selection

It is always easier to argue for a feature than to argue that the advantage of the
feature|which will be very plausible in all interesting cases| is outweighed by nebulous

concerns of coherence, simplicity, stability, di�culties of transition, etc.
|Stroustroup (1994, page 148)

In this section, we look at a speci�c type of a parameter tuning problem: �nding a good

feature subset, which could be thought of as a zero-one parameter for each feature (use

or ignore). While this type of parameter may not be explicitly available in all algorithms,

it is applicable to all induction algorithms because we can simply hide features in the

dataset before passing the dataset to the induction algorithm. The issue of optimal feature

subsets is discussed and its relation to relevance of features. We show problems with ex-

isting de�nitions of relevance and demonstrate how partitioning relevant features into two

families|weak and strong|helps us understand the issue better. We examine two general

approaches to feature subset selection|the �lter approach and the wrapper approach|and

we then investigate the latter in detail.

4.2.1 The Problem

Practical machine learning algorithms, including top-down induction of decision tree al-

gorithms (e.g., ID3, C4.5, CART) and instance-based algorithms (i.e., nearest-neighbor
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algorithms), are known to degrade in performance (prediction accuracy) when faced with

many features that are not necessary for predicting the desired output. Algorithms such as

Naive-Bayes are robust with respect to irrelevant features but may degrade in performance

if the features are correlated (even if relevant).

For example, running C4.5 in default mode on the Monk1 problem, which has three

irrelevant features, generates a tree with 15 interior nodes, �ve of which test irrelevant

features. The generated tree has an error rate of 24.3%, which is reduced to 11.1% if only

the three relevant features are given. Aha (1992) noted that \IB3's storage requirement

increases exponentially with the number of irrelevant attributes" (IB3 is a nearest-neighbor

algorithm that attempts to save only important prototypes). Performance likewise degrades

rapidly with irrelevant features.

The problem of feature subset selection is that of �nding a subset of the original features

of a dataset, such that an induction algorithm that is run on data containing only these

features generates a classi�er with the highest possible accuracy. Note that feature subset

selection chooses a set of features from existing features, and does not construct new ones;

there is no feature extraction or construction (Kittler 1986, Rendell & Seshu 1990).

From a purely theoretical standpoint, the question is not of much interest. The opti-

mal Bayes rule is monotonic, i.e., adding features cannot decrease the accuracy, and hence

restricting the induction algorithm to a subset of features is never advised. Practical al-

gorithms, however, are not given access to the underlying distribution, and most practical

algorithms attempt to �t to the data by solving NP-hard optimization problems. For exam-

ple, decision tree induction algorithms usually attempt to �nd a small tree that �ts the data

well, yet �nding the optimal binary decision tree is NP-hard (Hya�l & Rivest 1976, Hancock

1989). For neural-networks, the problem is even harder; the problem of loading a three-

node neural network with a training set is NP-hard if the nodes compute linear threshold

functions (Judd 1988, Blum & Rivest 1992). Because most induction problems are NP-hard

and heuristics are used, we de�ne an optimal feature subset with respect to the induction

algorithm. The problem of feature subset selection is then reduced to the problem of �nding

an optimal subset.

De�nition 4.1

Given an inducer I, and a dataset D with features X1; X2; : : : ; Xn, from a distribution D

over the labelled instance space, an optimal feature subset, ~Xopt, is a subset of the

features such that the accuracy of the classi�er C = I(D) is maximal.
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An optimal feature subset need not be unique because it may be possible to achieve the same

accuracy using di�erent sets of features (e.g., when two features are perfectly correlated,

than one can be replaced by the other). In most practical problems, we do not have access

to the underlying distribution and must estimate the classi�er's accuracy from the data.

4.2.2 Relevance of Features

One important question is the relation between optimal features and \relevance," which

is a very loaded term. In this section, we present de�nitions of relevance that have been

suggested in the literature. We then show a single example where the de�nitions give

unexpected answers, and we suggest that two degrees of relevance are needed: weak and

strong. We show that relevance of a feature does not imply that it is in the optimal feature

subset but that irrelevance generally implies that it should not be in the optimal feature

subset.

Existing De�nitions

Almuallim & Dietterich (1991, p. 548) de�ne relevance under the assumptions that all

features and the label are Boolean and that there is no noise.

De�nition 4.2

A feature Xi is said to be relevant1 to a concept C if Xi appears in every Boolean formula

that represents C and irrelevant1 otherwise.

Gennari, Langley & Fisher (1989, Section 5.5) de�ne relevance as1

De�nition 4.3

Xi is relevant2 i� there exists some xi and y for which p(Xi = xi) > 0 such that

p(Y = y j Xi = xi) 6= p(Y = y) :

Under this de�nition, Xi is relevant if knowing its value can change the estimates for Y ,

or in other words, if Y is conditionally dependent on Xi. Note that this de�nition fails to

1The de�nition given is a formalization of their statement: \Features are relevant if their values vary
systematically with category membership."
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De�nition Relevant Irrelevant

De�nition 4.2 X1 X2; X3; X4; X5

De�nition 4.3 None All

De�nition 4.4 All None

De�nition 4.5 X1 X2; X3; X4; X5

Table 4.1: Feature relevance for the Correlated XOR problem under the four de�nitions.

capture the relevance of features in the parity concept where all unlabelled instances are

equiprobable, and it may therefore be changed as follows.

Let Si be the set of all features except Xi, i.e., Si = fX1; : : : ; Xi�1; Xi+1; : : : ; Xmg.
Denote by si a value-assignment to all features in Si.

De�nition 4.4

Xi is relevant3 i� there exists some xi, y, and si for which p(Xi = xi) > 0 such that

p(Y = y; Si = si j Xi = xi) 6= p(Y = y; Si = si) :

Under the following de�nition, Xi is relevant if the probability of the label (given all features)

can change when we eliminate knowledge about the value of Xi.

De�nition 4.5

Xi is relevant4 i� there exists some xi, y, and si for which p(Xi = xi; Si = si) > 0 such

that

p(Y = y j Xi = xi; Si = si) 6= p(Y = y j Si = si) :

The following example shows that all the de�nitions above give unexpected results.

Example 4.1 (Correlated XOR) Let features X1; : : : ; X5 be Boolean. The instance

space is such that X2 and X3 are negatively correlated with X4 and X5, respectively,

i.e., X4 = X2, X5 = X3. There are only eight possible instances, and we assume they are

equiprobable. The (deterministic) target concept is

Y = X1 � X2 (� denotes XOR) :

Note that the target concept has an equivalent Boolean expression, namely, Y =

X1 � X4. The features X3 and X5 are irrelevant in the strongest possible sense. X1
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is indispensable, and either but not both of fX2; X4g can be disposed of. Table 4.1 shows

for each de�nition, which features are relevant, and which are not.

According to De�nition 4.2, X3 and X5 are clearly irrelevant; both X2 and X4 are

irrelevant because each can be replaced by the negation of the other. By De�nition 4.3, all

features are irrelevant because for any output value y and feature value x, there are two

instances that agree with the values. By De�nition 4.4, every feature is relevant because

knowing its value changes the probability of four of the eight possible instances from 1/8 to

zero. By De�nition 4.5,X3 and X5 are clearly irrelevant, and both X2 and X4 are irrelevant

because they do not add any information to S4 and S2, respectively.

Although such simple negative correlations are unlikely to occur, domain constraints

create a similar e�ect. When a nominal feature such as color is encoded as input to a

neural network, it is customary to use a local encoding , where each value is represented by

an indicator feature. For example, the local encoding of a four-valued nominal fa; b; c; dg
would be f0001; 0010; 0100; 1000g (see also Section 2.4). Under such an encoding, any single
indicator feature is redundant and can be determined by the rest. Thus most de�nitions of

relevance will declare all indicator features to be irrelevant.

Strong and Weak Relevance

We now claim that two degrees of relevance are required: weak and strong. Relevance should

be de�ned in terms of a Bayes classi�er|the optimal classi�er for a given problem. A feature

X is strongly relevant if removal of X alone will result in performance deterioration of

an optimal Bayes classi�er. A feature X is weakly relevant if it is not strongly relevant

and there exists a subset of features, S, such that the performance of a Bayes classi�er on

S is worse than the performance on S [ ffg. A feature is irrelevant if it is not strongly or

weakly relevant.

De�nition 4.5 repeated below de�nes strong relevance. Strong relevance implies that the

feature is indispensable in the sense that it cannot be removed without loss of prediction

accuracy. Weak relevance implies that the feature can sometimes contribute to prediction

accuracy.

De�nition 4.5 (Strong relevance)

A feature Xi is strongly relevant i� there exists some xi, y, and si for which p(Xi =
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xi; Si = si) > 0 such that

p(Y = y j Xi = xi; Si = si) 6= p(Y = y j Si = si) :

De�nition 4.6 (Weak relevance)

A feature Xi is weakly relevant i� it is not strongly relevant, and there exists a subset of

features S0i of Si for which there exists some xi, y, and s
0
i with p(Xi = xi; S

0
i = s0i) > 0 such

that

p(Y = y j Xi = xi; S
0
i = s0i) 6= p(Y = y j S0i = s0i) :

A feature is relevant if it is either weakly relevant or strongly relevant; otherwise, it is

irrelevant. Borrowing some terminology from rough sets (Pawlak 1991, Slowinski 1992),

the set of strongly relevant features form the core and any set of features that allow a

Bayes classi�er to achieve the highest possible accuracy forms a reduct. A reduct can only

contain strongly relevant and weakly relevant features. Pawlak (1991) shows that the core

is the intersection of all the reducts and that every reduct consists only of the core features

and weakly relevant features.

In Example 4.1, feature X1 is strongly relevant; features X2 and X4 are weakly relevant;

and X3 and X5 are irrelevant.

4.2.3 Relevance and Optimality of Features

A Bayes classi�er must use all strongly relevant features (the core), and possibly some

weakly relevant features. Classi�ers induced from data, however, are not optimal, as they

have no access to the underlying distribution; furthermore, they may be using restricted

hypothesis spaces that cannot utilize all features (see example below). Practical induction

algorithms that generate classi�ers may bene�t from the omission of features, including

strongly relevant features.

Example 4.2 (Relevance and Optimality) Let the universe of possible instances be

f0; 1g3, that is, three Boolean features, sayX1; X2; X3. Let the distribution over the universe

be uniform, and assume the target concept is f(X1; X2; X3) = (X1 ^ X2) _ X3. Under

any reasonable de�nition of relevance, all features are relevant to this target function.
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Figure 4.2: The feature �lter approach, in which the features are �ltered independently of
the induction algorithm.

If the hypothesis space is the space of monomials, i.e., conjunctions of literals, the only

optimal feature subset is fX3g. The accuracy of the monomial X3 is 87:5%, the highest

accuracy achievable within this hypothesis space.

The example above shows that relevance (even strong relevance) does not imply that a

feature is in an optimal feature subset. Another question is whether an irrelevant feature

can ever be in an optimal feature subset. The following trivial example shows that this may

be true.

Example 4.3 (Buggy Inducer) Consider an inducer Buggy-ind that induces a classi�er.

Due to a bug, if feature number one is not given, the inducer produces a classi�er that labels

instances with label zero; otherwise, a more sensible classi�er is produced. Even if feature

one is totally irrelevant, it must appear in any optimal feature subset in order for the

classi�er to predict anything other than class zero.

We hope that cases such as the example above are extremely rare in practice. In general,

a totally irrelevant feature should not be in the optimal feature subset for an algorithm.

4.2.4 The Filter Approach

There are a number of di�erent approaches to subset selection. In this section, we review

existing approaches in machine learning. We refer the reader to Section 4.10 for related

work in statistics and pattern recognition. The reviewed methods for feature subset selection

follow the �lter approach and attempt to assess the merits of features from the data, ignoring

the induction algorithm.

The �lter approach, shown in Figure 4.2, selects features using a preprocessing step. The

main disadvantage of the �lter approach is that it totally ignores the e�ects of the selected
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feature subset on the performance of the induction algorithm. We now review some existing

algorithms that fall into the �lter approach.

The FOCUS Algorithm

The FOCUS algorithm (Almuallim & Dietterich 1991, Almuallim & Dietterich 1994), orig-

inally de�ned for noise-free Boolean domains, exhaustively examines all subsets of features,

selecting the minimal subset of features that is su�cient to determine the label value for

all instances in the training set. This preference for a small set of features is referred to as

the MIN-FEATURES bias.

This bias has severe implications when applied blindly without regard for the resulting

induced concept. For example, in a medical diagnosis task, a set of features describing a

patient might include the patient's social security number (SSN). (We assume that features

other than SSN are su�cient to determine the correct diagnosis.) When FOCUS searches

for the minimum set of features, it will pick the SSN as the only feature needed to uniquely

determine the label2. Given only the SSN, any induction algorithm is expected to generalize

very poorly.

The Relief Algorithm

The Relief algorithm (Kira & Rendell 1992a, Kira & Rendell 1992b, Kononenko 1994)

assigns a \relevance" weight to each feature, which is meant to denote the relevance of

the feature to the target concept. Relief is a randomized algorithm. It samples instances

randomly from the training set and updates the relevance values based on the di�erence

between the selected instance and the two nearest instances of the same and opposite class

(the \near-hit" and \near-miss").

The Relief algorithm �nds all weakly relevant features:

Relief does not help with redundant features. If most of the given features are

relevant to the concept, it would select most of them even though only a fraction

are necessary for concept description (Kira & Rendell 1992a, page 133).

In real domains, many features have high correlations with the label, and thus many are

(weakly) relevant, and will not be removed by Relief. In the simple parity example used

2This is true even if SSN is encoded in ` binary features as long as more than ` other features are required
to determine the diagnosis.
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in (Kira & Rendell 1992a, Kira & Rendell 1992b), there were only strongly relevant and

irrelevant features, so Relief found the strongly relevant features most of the time. While

nearest-neighbors are not hurt much by weakly relevant features, Naive-Bayes is a�ected.

The Relief algorithm was motivated by nearest-neighbors and it is good speci�cally for

similar types of induction algorithms.

Feature Filtering Using Decision Trees

Cardie (1993) used a decision tree algorithm to select a subset of features for a nearest-

neighbor algorithm. Since a decision tree typically contains only a subset of the features,

those that appeared in the �nal tree were selected for the nearest-neighbor. The decision

tree thus serves as the �lter for the nearest-neighbor algorithm.

Although the approach worked well for some datasets, it has some major shortcomings.

Features that are good for decision trees are not necessarily useful for nearest-neighbor.

As with Relief, one expects that the totally irrelevant features will be weeded, and this

is probably the major e�ect that led to some improvements in the datasets experimented

with. However, while a nearest-neighbor algorithm can take into account the e�ect of

many relevant features, the current methods of building decision trees su�er from data

fragmentation and not too many splits can be made before the number of instances is

exhausted. If the tree is approximately balanced and the number of training instances that

trickles down to each subtree is approximately the same, then a decision tree cannot test

more than O(log2m) features in a path.

Summary of Filter Approaches

Figure 4.3 shows the set of features that FOCUS and Relief search for. While FOCUS is

searching for a minimal set of features, Relief searches for all the relevant features (both

weak and strong).

Filter approaches to feature subset selection do not take into account the biases of

the induction algorithms and select feature subsets that are independent of the induction

algorithms. In some cases, measures can be devised that are algorithm speci�c, and these

may be computed e�ciently. For example, in linear regression, measures such as Mallow's

Cp (Mallows 1973) and PRESS (Prediction sum of squares) (Neter, Wasserman & Kutner

1990) have been devised so that they do not require running the regression many times,

and thus avoid the cross-validation step used in the default wrapper setup. These measures
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Figure 4.3: A view of feature set relevance.

and the Relief measure, for example, would not be appropriate as feature subset selectors

for Naive-Bayes.

The corral dataset, which is an arti�cial dataset we invented, gives a possible scenario,

where �lter-approaches fail miserably. We repeat the description from Section 2.4. There

are 32 instances in this Boolean domain. The target concept is

(A0 ^ A1) _ (B0 ^ B1) :

The feature named \irrelevant" is uniformly random, and the feature \correlated" matches

the class label 75% of the time (for speci�c instances). Greedy strategies for building

decision trees pick the \correlated" feature as it seems best by all known selection criteria.

After the wrong root split, the instances are fragmented and there are not enough instances

at each subtree to describe the correct concept. Figure 4.4 shows the decision tree induced

by C4.5. CART induces a similar decision tree with the \correlated" feature at the root.

When this feature is removed, the correct tree is found.

Because the \correlated" feature is really correlated with the label (in fact, very highly

correlated), then �lter algorithms will generally select it. Wrapper approaches, on the other
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Figure 4.4: The \Corral" datasets fools top-down decision-tree algorithms into picking the
\correlated" feature for the root, causing fragmentation, which in turns causes the irrelevant
feature to be chosen.

hand, may discover that the feature is hurting performance and will avoid selecting it.

4.3 The Wrapper Approach to Feature Subset Selection

If variable elimination has not been sorted out after two decades
of work assisted by high-speed computing, then perhaps the time

has come to move on to other problems.
|R. L. Plackett, discussion in Miller (1984)

In the wrapper approach, shown in Figure 4.5, the feature subset selection is done using

the induction algorithm as a black box (i.e., no knowledge of the algorithm is needed, just

the interface). The feature subset selection algorithm conducts a search for a good subset

using the induction algorithm itself as part of the evaluation function. The accuracy of

the induced classi�ers is estimated using accuracy estimation techniques as described in

Chapter 3. The problem we are investigating is that of state space search, and di�erent

search engines will be investigated in the next sections.
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Figure 4.5: The wrapper approach to feature subset selection. The induction algorithm is
used as a \black box" by the subset selection algorithm.

The wrapper approach conducts a search in the space of possible parameters. A search

requires a state space, an initial state, a termination condition, and a search engine (Gins-

berg 1993, Russell & Norvig 1995). The next section focuses on comparing search engines,

that is, the way we search the space of possible parameters. The features are used as ad-

justable parameters, i.e., whether a feature is shown to the algorithm or not. The feature

subset selection problem will thus serve as our �rst testbed for comparing search algorithms.

The search space organization that we chose is such that each state represents a feature

subset. For n features, there are n bits in each state, and each bit indicates whether a

feature is present (1) or absent (0).

Operators determine the partial ordering between the states, and we have chosen to

use operators that add or delete a single feature from a state, corresponding to the search

space commonly used in the stepwise methods in statistics. Figure 4.6 shows such the state

space and operators for a four-feature problem. The size of the search space for n features

is O(2n), so it is impractical to search the whole space exhaustively, unless n is small. We

will shortly describe the di�erent search engines that we compared.

The goal of the search is to �nd the state with the highest evaluation, using a heuristic

function to guide it. Since we do not know the actual accuracy of the induced classi�er,

we use accuracy estimation as both the heuristic function and the evaluation function (See

Section 4.8 for more details on the abstract problem). The evaluation function we use
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Figure 4.6: The state space search for feature subset selection. Each node is connected to
nodes that have one feature deleted or added.

is �ve-fold cross-validation, which is repeated multiple times. The number of repetitions

is determined on the y by looking at the standard deviation of the accuracy estimate,

assuming they are independent. If the standard deviation of the accuracy estimate is above

1% and �ve cross-validations have not been executed, we execute another cross-validation

run. While this is only a heuristic, it seems to work well in practice and avoids multiple

cross-validation runs for large datasets.

The term forward selection refers to a search that begins at the empty set of features;

the term backward elimination refers to a search that begins at the full set of features.

The initial state we use in most of our experiments is the empty set of features, hence we

are using a forward selection approach. The main reason for this choice is computational:

building classi�ers when there are few features in the data is much faster. Although in

theory, going backward from the full set of features may capture interacting features more

easily, the method is extremely expensive with only the add feature and delete feature

operators. In Section 4.5, we will introduce compound operators that will make the back-

ward elimination approach practical. The following summary shows the instantiation of the

search instance:
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State A Boolean vector, one bit per feature

Initial state The empty set of features (0,0,0. . . , 0)

Heuristic/evaluation Five-fold cross-validation repeated multiple times with a

small penalty (0.1%) for every feature.

Search algorithm Hill-climbing or best-�rst search

Termination condition Algorithm dependent (see below)

A complexity penalty was added to the evaluation function, penalizing feature subsets

with many features so as to break ties in favor of smaller subsets. The penalty was set to

0.1%, which is very small compared to the standard deviation of the accuracy estimation,

which is aimed to be below 1%.

4.4 The Search Engine

You need not fash yourself anymore about that, man; I have now
made an engine that shall not waste a particle of steam.

|James Watt, 1765

In this section we evaluate di�erent search engines for the wrapper approach. We begin

with a hill-climbing (greedy) search engine, and show that it terminates at local maxima

too often. We then use a best-�rst search engine and show that it works much better.

4.4.1 A Hill-climbing Search Engine

The simplest search technique is hill-climbing, also called greedy search or steepest ascent.

Table 4.2 describes the algorithm, which expands the current node and moves to the child

with the highest accuracy, terminating when no child improves over the current node.

Table 4.3 and Figures 4.7 and 4.8 show a comparison of ID3 and Naive-Bayes, both with

and without feature subset selection. Table 4.4 and Figure 4.9 and 4.10 show the average

number of features used for each algorithm (averaged over the ten folds when relevant).

The following observations can be made:

� For the real datasets and ID3, this simple version of feature subset selection provides

an indirect pruning mechanism. By hiding features from ID3, the leaves cannot be

made pure. This type of pruning is global in the sense that a feature is either present

or absent, but it cannot be present at one subtree and not at another. As shown in
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Table 4.2: A hill-climbing search algorithm

1. Let v  initial state.

2. Expand v: apply all operators to v, giving v's children.

3. Evaluate the children of v, giving f(wi) for each child wi.

4. Let w = argmax
wi

f(wi) (get the child with highest evaluation).

5. If w > v then v  w; goto 2.

6. Return v.

Table 4.3: A comparison of ID3 and Naive-Bayes with a feature subset selection wrapper.
The �rst p-val column indicates the probability that feature subset selection (FSS) improves
ID3 and the second column indicates the probability that FSS improves Naive-Bayes (see
Section 2.6 for a description of p-values).

Dataset ID3 ID3-FSS p-val Naive-Bayes NB-FSS p-val

1 breast cancer 94.57� 0.9 94.71� 0.5 0.58 97.00� 0.5 96.57� 0.6 0.22
2 cleve 72.35� 2.3 78.24� 2.0 1.00 82.88� 2.3 79.56� 3.9 0.15
3 crx 81.16� 1.4 85.65� 1.6 1.00 87.10� 0.8 85.36� 1.6 0.08
4 DNA 90.64� 0.9 94.27� 0.7 1.00 93.34� 0.7 94.52� 0.7 0.96
5 horse-colic 81.52� 2.0 83.15� 1.1 0.84 79.86� 2.5 83.15� 2.0 0.93
6 Pima 68.73� 2.5 69.52� 2.2 0.63 75.90� 1.8 74.34� 2.0 0.21
7 sick-euthyroid 96.68� 0.6 97.06� 0.5 0.76 95.64� 0.6 97.35� 0.5 1.00
8 soybean-large 90.62� 0.9 90.77� 1.1 0.56 91.80� 1.2 92.38� 1.1 0.69

9 corral 100.00� 0.0 75.00� 3.8 0.00 90.62� 2.6 75.00� 3.8 0.00
10 m-of-n-3-7-10 91.60� 0.9 77.34� 1.3 0.00 86.43� 1.1 77.34� 1.3 0.00
11 Monk1 82.41� 1.8 75.00� 2.1 0.00 71.30� 2.2 75.00� 2.1 0.96
12 Monk2-local 82.41� 1.8 67.13� 2.3 0.00 60.65� 2.3 67.13� 2.3 1.00
13 Monk2 69.68� 2.2 67.13� 2.3 0.13 61.57� 2.3 67.13� 2.3 0.99
14 Monk3 90.28� 1.4 97.22� 0.8 1.00 97.22� 0.8 97.22� 0.8 0.50

Average real: 84.53 86.67 87.94 87.90
Average artif. 86.06 76.47 77.96 76.47
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Figure 4.7: ID3: Absolute di�erence (FSS minus ID3) in accuracy (left) and in std-devs
(right).
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Figure 4.8: Naive-Bayes: Absolute di�erence in accuracy (left) and in std-devs (right).

Table 4.4 and Figures 4.9 and 4.10, the number of features selected is small compared

to the original set and compared to those selected by ID3. For ID3, the accuracy goes

up from 84.53% to 86.67%, which is a 13.8% relative reduction in the error rate. The

accuracy uniformly improves or remains the same for all the real datasets.

� For the arti�cial datasets and ID3, the story is di�erent. All the arti�cial datasets,

except Monk3 involve high-order interactions. In the corral dataset, after the corre-

lated feature is chosen, no single addition of a feature will lead to an improvement,

so the hill-climbing process stops too early; similar scenarios happen with the other

arti�cial datasets, where adding a single feature at a time does not help.

The concept for Monk3 is

(jacket-color = green and holding = sword) or

(jacket-color 6= blue and body-shape 6= octagon)
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Figure 4.9: ID3: Number of features in original dataset (left), used by ID3 (middle), and
selected by hill-climbing feature subset selection (right). The DNA has 180 features (not
shown).
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Figure 4.10: Naive-Bayes: Number of features in original dataset (left) and selected by
hill-climbing feature subset selection (right).
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Table 4.4: The number of features in the dataset, the number used by ID3 (since it does
some feature subset selection), the number selected by feature subset selection (FSS) for
ID3, and the number selected by FSS for Naive-Bayes. Numbers without a decimal point are
for single runs, number with a decimal point are averages for the ten-fold cross-validation.

Dataset Number of Features
Original Dataset ID3 ID3-FSS NB-FSS

1 breast cancer 10 9.1 2.9 4.3
2 cleve 13 11.4 2.6 3.1
3 crx 15 13.6 2.9 1.6
4 DNA 180 72 11 11
5 horse-colic 22 17.4 2.8 4.3
6 Pima 8 8.0 1.0 3.8
7 sick-euthyroid 25 14 4 3
8 soybean-large 35 25.8 12.7 12.6

9 corral 6 4 1 1
10 m-of-n-3-7-10 10 10 0 0
11 Monk1 6 6 1 1
12 Monk2-local 17 14 0 0
13 Monk2 6 6 0 0
14 Monk3 6 6 2 2

and the data contains 5%mislabelled instances. The feature subset selection algorithm

quickly �nds body-shape and jacket-color, which together yield the second conjunction

in the above expression, which has accuracy 97.2%. With more features, a larger tree

is built which is inferior.

� For the real datasets and Naive-Bayes, the average accuracy is about same, but very

few features are used.

� For the arti�cial datasets and Naive-Bayes, the average accuracy degrades because

of corral and m-of-n-3-7-10 (the relative error increases by 6.7%). Both of these

require a better search than hill climbing can provide. An interesting observation

is the fact that the performance on the Monk2 and Monk2-local datasets improves

simply by hiding all features, forcing Naive-Bayes to predict the majority class. The

independence assumption is so wrong for this dataset that it is better to predict the

majority class.
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� For the DNA dataset, both algorithms selected only 11 features out of 180. While

the selected set di�ered, nine features were the same, indicating that these nine are

crucial for both types of inducers.

The results, especially on the arti�cial datasets where we know what the relevant feature

are, indicate that the feature subset selection is getting stuck at local maxima too often.

The next section deals with improving the search engine.

4.4.2 A best-�rst Search Engine

Best-�rst search (Russell & Norvig 1995, Ginsberg 1993) is a more robust method than hill-

climbing. The idea is to select the most promising node we have generated so far that has

not already been expanded. Table 4.5 describes the algorithm, which varies slightly from

the standard version because there is no explicit goal condition in our problem. Best-�rst

search usually terminates upon reaching the goal. Our problem is an optimization problem,

so the search can be stopped at any point and the best solution found so far can be returned

(theoretically improving over time), thus making it an anytime algorithm (Boddy & Dean

1989). In practice, we must stop the run at some stage, and we use what we call a stale

search: if we have not found a new best node in the last k expansions, we terminate the

search. A new best node is de�ned as a node with an accuracy estimation at least � higher

than the best one found so far. In the following experiments, k was set to �ve and epsilon

was 0.1%.

Table 4.6 and Figures 4.11 and 4.12 show a comparison of ID3 and Naive-Bayes, both

with hill-climbing feature subset selection and best-�rst search feature subset selection.

Table 4.7 shows the average number of features used for each algorithm (averaged over the

ten folds when relevant). The following observations can be made:

� For the real datasets and both algorithms (ID3 and Naive-Bayes), there is almost no

di�erence between hill climbing and best-�rst search. Best-�rst search usually �nds

a larger feature subset, but the accuracies are approximately the same. The only

statistically signi�cant di�erence is for Naive-Bayes and soybean, where there was a

signi�cant improvement with a p-value of 0.95.

� For the arti�cial datasets, there is a signi�cant improvement for ID3. Performance

drastically improves on three datasets (corral, Monk1, Monk2-local), remains the same
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Table 4.5: The best-�rst search algorithm

1. Put the initial state on the OPEN list,

CLOSED list  ;, BEST  initial state.

2. Let v = argmax
wi2OPEN

f(wi) (get the state from OPEN with maximal f(v)).

3. Remove v from OPEN, add v to CLOSED.

4. If f(v)� � > f(BEST), then BEST v.

5. Expand v: apply all operators to v, giving v's children.

6. For each child not in the CLOSED list, evaluate and add to the

OPEN list.

7. If BEST changed in the last k expansions, goto 2.

8. Return BEST.

on two (m-of-n-3-7-10, Monk3), and degrades on only one (Monk2). Analyzing the

selected features, the optimal feature subset was found for corral, Monk1, Monk2-

local, and Monk3 (only two features out of the three relevant ones were selected for

Monk3 because this correctly led to better prediction accuracy).

The search was unable to �nd the seven relevant features in m-of-n-3-7-10. Because

of the complexity penalty of 0.1% for extra features, only subsets of two features

were tried, and such subsets never improved over the majority prediction (ignoring all

features) before the search was considered stale (�ve non-improving node expansions).

The local maxima in this dataset is too large for the current setting of best-�rst search

to overcome. A speci�c experiment was conducted to determine how long it would

take best-�rst search to �nd the correct feature subset. The stale limit (originally

set to �ve) was increased until a node better than the node using zero features, and

predicting the majority label value, was found. The �rst stale setting that overcame

the local maximum was 29 (any number above would do). At this setting, a node with

three features from the seven is found that is more accurate than majority. Nine more

node expansions lead to the correct feature subset. Overall, 193 nodes were evaluated

out of the 1024 possibilities. The total running time to �nd the correct feature subset

was 33 CPU minutes, and the prediction accuracy was 100%.
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Table 4.6: A comparison of a hill-climbing search and a best-�rst search. The �rst p-val
column indicates the probability that best-�rst search feature subset selection (BFS-FSS)
improves hill-climbing feature subset selection (HC-FSS) for ID3 and the second column is
analogous but for Naive-Bayes.

Dataset ID3 p-val Naive-Bayes p-val
HC-FSS BFS-FSS HC-FSS BFS-FSS

1 breast cancer 94.71� 0.5 94.57� 0.7 0.41 96.57� 0.6 96.00� 0.6 0.17
2 cleve 78.24� 2.0 79.52� 2.3 0.73 79.56� 3.9 80.23� 3.9 0.57
3 crx 85.65� 1.6 85.22� 1.6 0.39 85.36� 1.6 86.23� 1.0 0.75
4 DNA 94.27� 0.7 94.27� 0.7 0.50 94.52� 0.7 94.60� 0.7 0.55
5 horse-colic 83.15� 1.1 82.07� 1.5 0.21 83.15� 2.0 83.42� 2.0 0.55
6 Pima 69.52� 2.2 68.73� 2.2 0.36 74.34� 2.0 75.12� 1.5 0.67
7 sick-euthyroid 97.06� 0.5 97.06� 0.5 0.50 97.35� 0.5 97.35� 0.5 0.50
8 soybean-large 90.77� 1.1 91.65� 1.0 0.81 92.38� 1.1 93.70� 0.4 0.95

9 corral 75.00� 3.8 100.00� 0.0 1.00 75.00� 3.8 90.62� 2.6 1.00
10 m-of-n-3-7-10 77.34� 1.3 77.34� 1.3 0.50 77.34� 1.3 77.34� 1.3 0.50
11 Monk1 75.00� 2.1 97.22� 0.8 1.00 75.00� 2.1 72.22� 2.2 0.10
12 Monk2-local 67.13� 2.3 95.60� 1.0 1.00 67.13� 2.3 67.13� 2.3 0.50
13 Monk2 67.13� 2.3 63.89� 2.3 0.08 67.13� 2.3 67.13� 2.3 0.50
14 Monk3 97.22� 0.8 97.22� 0.8 0.50 97.22� 0.8 97.22� 0.8 0.50

Average real: 86.67 86.64 87.90 88.33
Average artif. 76.47 88.55 76.47 78.61

In the Monk2 dataset, a set of three features were chosen, and accuracy signi�cantly

degraded compared to hill-climbing, which selected the empty feature subset. This is

the only signi�cant accuracy di�erence where performance degraded because best-�rst

search was used (p-value of 0.08). The Monk2 concept in this encoding is unsuitable for

decision trees, as a correct tree (built from the full space) contains 439 nodes and 296

leaves. Because the standard training set contains only 169 instances, it is impossible

to build the correct tree using the standard recursive partitioning techniques.

� For the arti�cial datasets, there was a signi�cant improvement for Naive-Bayes only

for corral (p-value of 1.00), and performance signi�cantly degraded for Monk1 (p-value

of 0.10). The rest of the datasets were una�ected.

The chosen feature subset for corral contained features A0; A1; B0; B1; and the \cor-

related" feature. It is known that only the �rst four are needed, yet because of the
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Figure 4.11: ID3: Absolute di�erence (best-�rst search FSS minus hill-climbing FSS) in
accuracy (left) and in std-devs (right).
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Figure 4.12: Naive-Bayes: Absolute di�erence in accuracy (left) and in std-devs (right).

limited representation power of the Naive-Bayes, performance using the \correlated"

feature is better than performance using only the �rst four features. If Naive-Bayes

is given access only to the �rst four features, the accuracy degrades from 90.62% to

87.50%. This dataset is one example where the feature subset for di�erent induc-

tion algorithms is known to be di�erent. Decision trees are hurt by the addition of

the \correlated" feature (performance degrades), yet Naive-Bayes improves with this

feature.

The Monk1 dataset degrades in performance because the features head-shape, body-

shape, is-smiling, and jacket-color were chosen, yet performance is better if only jacket-

color is used. Note that both head-shape and body-shape are part of the target

concept, yet the representation power of Naive-Bayes is again limited and cannot

utilize this information well. As with the Monk2 dataset for ID3, this may be an

example of the search over�tting in the sense that some subset seems to slightly
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Table 4.7: The number of features in the dataset, the number used by ID3 (since it does
some feature subset selection), the number selected by hill-climbing FSS for ID3, best-�rst
search FSS for ID3, and analogously for Naive-Bayes.

Dataset Number of Features
Original ID3 ID3-FSS NB-FSS
dataset HC BFS HC BFS

1 breast cancer 10 9.1 2.9 3.6 4.3 5.2
2 cleve 13 11.4 2.6 3.4 3.1 3.6
3 crx 15 13.6 2.9 3.6 1.6 5.9
4 DNA 180 72 11 11 11 14
5 horse-colic 22 17.4 2.8 3.4 4.3 5.1
6 Pima 8 8.0 1.0 2.3 3.8 4.0
7 sick-euthyroid 25 14 4 4 3 3
8 soybean-large 35 25.8 12.7 13.7 12.6 13.8

9 corral 6 4 1 4 1 5
10 m-of-n-3-7-10 10 10 0 0 0 0
11 Monk1 6 6 1 3 1 4
12 Monk2-local 17 14 0 6 0 0
13 Monk2 6 6 0 3 0 0
14 Monk3 6 6 2 2 2 2

improve the accuracy estimation, but not the accuracy on the independent test set

(see Section 4.7 for further discussion on issues of over�tting).

The datasets m-of-n-3-7-10, Monk2-local, Monk2, and Monk3, all had the same ac-

curacy with best-�rst search as with hill-climbing. The Monk3 dataset cannot be

improved by any other feature subset. As with ID3, the search was unable to �nd a

good feature subset form-of-n-3-7-10 (the correct feature subset allows improving the

accuracy to 87.5%). For the Monk2 and Monk2-local datasets, the optimal feature

subset is indeed the empty set! Naive-Bayes on the set of relevant features yields

inferior performance to a majority inducer, which is how Naive-Bayes behaves on the

empty set of features.

While best-�rst search is better than hill-climbing, high-level interactions occuring in

m-of-n-3-7-10 cannot be caught with a search that starts at the empty feature subset unless

the stale parameter is drastically increased. An alternative approach, which su�ers less

from feature interaction, starts with the full set of features; however, the running time
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would make the approach infeasible in practice, especially if there are many features. The

current running times range from about 5-10 minutes of CPU time for small problems such

as Monk1, Monk2, Monk3, and corral, to 15 hours for DNA. In the next section, we attempt

to reorder the search space dynamically to allow the search to reach better nodes faster and

make the backward feature subset selection feasible.

4.5 The State Space: Compound Operators

If we try to gild the lily by using both options together. . .
|Quinlan (1993)

In the previous section, we looked at two search engines. In this section, we look at the

topology of the state space and dynamically modify it based on accuracy estimation results.

As previously described, the state space is commonly organized such that each node repre-

sents a feature subset, and each operator represents the addition or deletion of a feature.

The main problem with this organization is that the search must expand (i.e., generate

successors of) every node from the initial feature subset that is on the path to the best

feature subset. This section introduces a new way to change the search space topology by

creating dynamic operators that directly connect to nodes considered promising given the

evaluation of their children. These operators better utilize the information available in the

evaluated children.

The motivation for compound operators comes from Figure 4.13 that partitions the

feature subsets into core features (strongly relevant), weakly relevant features, and irrelevant

features. An optimal feature subset for a hypothesis space must be from the relevant feature

subset (strongly and weakly relevant features). A backward elimination search starting

from the full set of features (as depicted in Figure 4.13) and that removes one feature at a

time after expanding all children reachable using one operator, will have to expand all the

children of each node before removing a single feature. If there are i irrelevant features and

f features, (i � f) nodes must be evaluated. Similar reasoning applies to forward selection

search starting from the empty set of features. In domains where feature subset selection

might be most useful, there are many features but such a search may be prohibitively

expensive.

Compound operators are operators that are dynamically created after the standard set

of children, created by the add and delete operators, have been evaluated. Intuitively, there
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Figure 4.13: The state space. If a feature subset contains an irrelevant feature, it is in
the irrelevant area; if it contains only strongly relevant features it is in the core region;
otherwise, it is in the relevant region. The dotted arrows indicate compound operators.

is more information in the evaluation of the children than just the node with the maximum

evaluation. Compound operators combine operators that led to the best children into a

single dynamic operator. Figure 4.14 depicts a possible set of compound operators for

forward selection.

The root node containing no features was expanded by applying four add operators, each

one adding a single feature. The operators that led to 0; 1; 0; 0 and 0; 0; 1; 0 were combined

into the �rst compound operator (shown in a dashed line going left) because they led to

the two nodes with the highest evaluation (evaluation not shown). If the �rst compound

operator led to a node with an improved estimate, the second compound operator (shown in

a dashed line going right) is created that combines the best three of the original operators,

etc.
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Figure 4.14: The state space search with dotted arrows indicating compound operators.

Formally, if we rank the operators by the estimated accuracy of the children, then we

can de�ne compound operator ci to be the combination of the best i+ 1 operators. For

example, the �rst compound operator will combine the best two operators. If the best two

operators each added a feature, then the �rst compound operator will add both; if one

operator added and one operator deleted, then we try to do both in one operation.

The compound operators are applied to the parent, thus creating children nodes that

are farther away in the state space. Each compound node is evaluated and the generation

of compound operators continues as long as the estimated accuracy of the compound nodes

improves.

Compound operators generalize a few suggestions previously made in the literature.

Kohavi (1994c) suggested that the search might start from the set of strongly relevant

features (the core). If one starts from the full set of features, removal of any single strongly

relevant feature will cause a degradation in performance, while removal of any irrelevant

or weakly relevant feature will not. Since the last compound operator connects the full

feature subset to the core, the compound operators from the full feature subset plot a path

leading to the core. The path is explored by removing one feature at a time until estimated

accuracy deteriorates. Caruana & Freitag (1994) implemented a SLASH version of feature
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Figure 4.15: Comparison of compound (dotted line) and non-compound (solid line) searches.
The accuracy (y-axis) is that of the best node on an independent test set after a given
number of node evaluations (x-axis).

subset selection that eliminates the features not used in the derived decision tree. If there

are no features that improve the performance when deleted, then (ignoring orderings due

to ties) one of the compound operators will lead to the same node that slash would take

the search to. While the SLASH approach is only applicable for backward elimination,

compound operators are also applicable to forward selection.

Figure 4.15 shows two searches with and without compound operators. Compound op-

erators improve the search by �nding nodes with higher accuracy faster; however, whenever

it is easy to over�t, they cause over�tting earlier (see Section 4.7). Experimental results us-

ing compound operators are similar to those without them, except that they are sometimes

faster.

The main advantage of compound operators is that they make backward feature subset

selection possible. Table 4.8 and Figures 4.16 and 4.17 show the results of running the best-

�rst search algorithm with compound operators but starting with the full set of features

(backward elimination). Table 4.9 shows the number of features used for each of the di�erent

methods. When one starts from the full set of features, feature interactions are easier for

the search to identify. The following observations can be made:

1. Except for m-of-n-3-7-10, the accuracy results for backward FSS with ID3 generally

degraded. The main improvement was for m-of-n-3-7-10, where the correct seven

bits were correctly identi�ed, resulting in 100% accuracy. The feature subsets were

generally larger, and apparently even best-�rst search cannot overcome some local
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Table 4.8: A comparison of a forward best-�rst search and backward best-�rst search with
compound operators. The p-val columns indicates the probability that backward is better
than forward.

Dataset ID3 p-val Naive-Bayes p-val
BFS-FSS BFS-FSS BFS-FSS BFS-FSS
forward back forward back

1 breast cancer 94.57� 0.7 93.85� 0.5 0.11 96.00� 0.6 96.00� 0.6 0.50
2 cleve 79.52� 2.3 75.89� 3.7 0.12 80.23� 3.9 82.56� 2.5 0.76
3 crx 85.22� 1.6 83.33� 1.5 0.10 86.23� 1.0 84.78� 0.8 0.05
4 DNA 94.27� 0.7 91.23� 0.8 0.00 94.60� 0.7 96.12� 0.6 0.99
5 horse-colic 82.07� 1.5 82.61� 1.7 0.63 83.42� 2.0 82.33� 1.3 0.26
6 Pima 68.73� 2.2 67.44� 1.4 0.24 75.12� 1.5 76.03� 1.6 0.72
7 sick-euthyroid 97.06� 0.5 97.06� 0.5 0.50 97.35� 0.5 97.35� 0.5 0.50
8 soybean-large 91.65� 1.0 91.35� 1.0 0.38 93.70� 0.4 94.29� 0.9 0.81

9 corral 100.00� 0.0 100.00� 0.0 0.50 90.62� 2.6 90.62� 2.6 0.50
10 m-of-n-3-7-10 77.34� 1.3 100.00� 0.0 1.00 77.34� 1.3 87.50� 1.0 1.00
11 Monk1 97.22� 0.8 97.22� 0.8 0.50 72.22� 2.2 72.22� 2.2 0.50
12 Monk2-local 95.60� 1.0 95.60� 1.0 0.50 67.13� 2.3 67.13� 2.3 0.50
13 Monk2 63.89� 2.3 64.35� 2.3 0.58 67.13� 2.3 67.13� 2.3 0.50
14 Monk3 97.22� 0.8 97.22� 0.8 0.50 97.22� 0.8 97.22� 0.8 0.50

Average real: 86.64 85.35 88.33 88.68
Average artif. 88.55 92.40 78.61 80.30

maxima. For example, DNA stopped with 36 features, but pruning more features

would improve the performance because the forward search found a subset of 11

features that was signi�cantly better (the accuracy estimation for the 11 feature subset

was higher than the one for the 36 feature subset, and because the same folds are used,

if the best-�rst search were to get to this 11-feature node, it would prefer it over the

�nal node selected in the backward search). In the next section, we use the backward

search with C4.5 that prunes, and the backward search then becomes much easier for

the best-�rst search algorithm.

2. For Naive-Bayes, backward FSS is a slight win in terms of accuracy. Only on crx

did the accuracy degrade signi�cantly (p-val=0.05), while on m-of-n-3-7-10 and DNA

it signi�cantly improved (p-val=1.00 and 0.99 respectively). In fact, for the DNA

dataset, no other known algorithm outperformed Naive-Bayes on the selected feature

subset. Taylor et al. (1994, page 159) compared 23 algorithms on this dataset (with
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Figure 4.16: ID3: Absolute di�erence (best-�rst search FSS backward with compound
operators minus forward) in accuracy (left) and in std-devs (right).
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Figure 4.17: Naive-Bayes: Absolute di�erence in accuracy (left) and in std-devs (right).

the same split of train/test sets), and the highest ranking one was RBF (radial ba-

sis functions) using 720 centers with an accuracy of 95.9%. The Naive-Bayes with

backward elimination had an accuracy of 96.12%.

3. The m-of-n-3-7-10 dataset with Naive-Bayes is a very interesting case. The feature

subset selection �nds six out of the seven relevant features, and the seventh selected

feature is an irrelevant one. Although m-of-n can be represented using a hyperplane,

and although in a Boolean domain the surface represented by Naive-Bayes is always

a hyperplane, it turns out that Naive-Bayes is unable to learn this target concept.

Table 4.10 was constructed by giving Naive-Bayes all possible instances and their

correct classi�cation for the 3-of-7 concept, and testing it on the same instances. We

can see that Naive-Bayes is unable to learn 3-of-7, but what is intriguing is that fact

that hiding a bit improves the accuracy.
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Table 4.9: The number of features in the dataset, the number used by ID3 (since it does
some feature subset selection), the number selected by hill-climbing FSS for ID3, best-�rst
search FSS for ID3, and analogously for Naive-Bayes.

Dataset Number of Features
Original ID3 ID3-FSS NB-FSS
dataset Forward Backward Forward Backward

1 breast cancer 10 9.1 3.6 5.3 5.2 5.9
2 cleve 13 11.4 3.4 4.6 3.6 7.9
3 crx 15 13.6 3.6 7.7 5.9 9.1
4 DNA 180 72 11 36 14 48
5 horse-colic 22 17.4 3.4 7.2 5.1 6.1
6 Pima 8 8.0 2.3 5.7 4.0 4.4
7 sick-euthyroid 25 14 4 4 3 3
8 soybean-large 35 25.8 13.7 17.7 13.8 16.7

9 corral 6 4 4 4 5 5
10 m-of-n-3-7-10 10 10 0 7 0 7
11 Monk1 6 6 3 3 4 4
12 Monk2-local 17 14 6 6 0 5
13 Monk2 6 6 3 3 0 0
14 Monk3 6 6 2 2 2 2

Table 4.10: The number of features given to the Naive-Bayes and the Perceptron inducers
in m-of-n-3-7-10 and the resulting accuracy. The training set was the whole instance space.

Features given Naive-Bayes Perceptron
accuracy accuracy

7 (all) 83.59 100.00
6 88.28 88.28
5 82.03 82.03
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The explanation for this result is as follows. There are
�7
0

�
+
�7
1

�
+
�7
2

�
= 29 instances

out of 27 = 128 that have label 0. There are
�7
1

�
+
�7
2

��2 = 49 ones in these 29 instances,

so each of the seven feature has 49=7 = 7 ones. We thus get the following:

Pr(Y = 0 j Xi = 1) = 7=29

Pr(Y = 0 j Xi = 0) = 22=29

Similarly,
P7

i=3

�7
i

� � i = 399, thus each of the seven features has 399=7 = 57 ones,

giving the following:

Pr(Y = 1 j Xi = 1) = 57=99

Pr(Y = 1 j Xi = 0) = 42=99

If there are only two ones in an instance, the probabilities computed by Naive-Bayes

are:
Pr(Y = 0) / 29=128 � (7=29)2 � (22=29)5 = 0:00331674

Pr(Y = 1) / 99=128 � (57=99)2 � (42=99)5 = 0:00352351

giving the label one a small advantage, and making the wrong prediction. Thus there

are
�7
2

�
= 21 mistakes out of the 128 possible instances, which is exactly 83.59%

accuracy.

With only six features, the best thing to do is to predict a label of one when there

two \on" bits, which is what the Naive-Bayes does (the calculation is omitted). This

will correctly capture all instances that originally had three bits, but will continue to

be wrong for those instances that had only two bits. However, out of the 21 instances

that had two bits on, six will now have only one bit on because there were 42 bits

total, and each of the seven bits had a one six times. Thus Naive-Bayes will now make

only 21� 6 = 15 mistakes, which yields an accuracy of 88.28%.

This example shows that although the hypothesis space for Naive-Bayes in Boolean

domains is a space of hyperplanes, it is unable to correctly identify this target concept,

while a perceptron can. More interesting, however, is the fact that any �lter approach

to features subset selection that ranks features independently (conditioned on the

label) must give the same rank to each one of the seven relevant features (due to

symmetry), and thus such an approach will never pick a subset of six features as the

wrapper approach does. The wrapper approach indeed �nds the optimal subset for

this target concept.
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Running times for the backward feature subset selection were about �ve times longer

than the forward, which is not bad considering the fact that we started with the full set

of features (also see the next section where compound operators help more when C4.5 is

used).

4.6 Global Comparison

Godwin's Rule of Nazi Analogies: As a USENET
discussion grows longer, the probability of a comparison

involving Nazis or Hitler approaches one.
|Rand Lindsly's quotation �le

We used ID3 and Naive-Bayes as our basic inducers for feature subset selection because they

do no pruning and, therefore, the e�ect of feature subset selection can be seen more clearly.

We have seen improvements in both algorithms, but an important remaining question is

how they compare with a state-of-the-art algorithm, such as C4.5, and whether C4.5 itself

can be improved with feature subset selection.

With compound operators, running C4.5 is faster than running ID3 because the com-

pound operators can easily remove the features that were pruned by C4.5, hence it makes

more sense to run the feature subset selection search backwards, which is what we have

done. Figures 4.18 and 4.19 show how the number of features used changes as the search

progresses, i.e., as more nodes are evaluated. Notice how before each node expansion,

the compound operators are applied and combine the operators leading to the best chil-

dren, thus drastically decreasing the number of nodes. Without compound operators, the

number of features could only decrease or increase by one at every node expansion. For

example, in the DNA dataset with C4.5, \only" 3555 nodes were evaluated and a subset of

12 features was selected; without compound operators, the algorithm would have to expand

(180� 12) � 180 = 30; 240 nodes just to get to this feature subset.

Running times for backward FSS with C4.5 are still very slow, but faster than backward

FSS with ID3. The largest run by far was DNA with 46 CPU hours; sick-euthyroid was the

second runner up with 2.1 CPU hours; soybean-large, crx, horse-colic took about one hour;

breast-cancer took 33 minutes; cleve and Pima took about 14 minutes, Monk2-local took

11 minutes; m-of-n-3-7-10 took 4 minutes; and the Monk problems and corral all took less

than 2 minutes.

Table 4.11 and Figures 4.20{4.22 show a comparison with C4.5, ID3 with feature subset
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Figure 4.18: DNA: Number of features evaluated as the search progresses (C4.5, best-�rst
search, backward). The vertical lines signify a node expansion, where the children of the
best node are expanded. The slanted line on the top shows how ordinary backward selection
would progress.
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Figure 4.19: Soybean: Number of features evaluated as the search progresses (C4.5, best-
�rst search, backward).
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Table 4.11: A comparison of C4.5 with ID3-FSS, C4.5-FSS, and Naive-Bayes-FSS. The
p-val columns indicates the probability that the column before it is improving upon C4.5

Dataset C4.5 ID3-FSS p-val C4.5-FSS p-val NB-FSS p-val
original Frwd-BFS Back-BFS Back-BFS

1 breast cancer 95.42� 0.7 94.57� 0.7 0.11 95.28� 0.6 0.41 96.00� 0.6 0.81
2 cleve 72.30� 2.2 79.52� 2.3 1.00 77.88� 3.2 0.98 82.56� 2.5 1.00
3 crx 85.94� 1.4 85.22� 1.6 0.31 85.80� 1.3 0.46 84.78� 0.8 0.15
4 DNA 92.66� 0.8 94.27� 0.7 0.99 94.44� 0.7 0.99 96.12� 0.6 1.00
5 horse-colic 85.05� 1.2 82.07� 1.5 0.01 84.77� 1.3 0.41 82.33� 1.3 0.01
6 Pima 71.60� 1.9 68.73� 2.2 0.08 70.18� 1.3 0.20 76.03� 1.6 0.99
7 sick-euthyroid 97.73� 0.5 97.06� 0.5 0.09 97.91� 0.4 0.66 97.35� 0.5 0.21
8 soybean-large 91.35� 1.6 91.65� 1.0 0.59 91.93� 1.3 0.65 94.29� 0.9 0.99

9 corral 81.25� 3.5 100.00� 0.0 1.00 81.25� 3.5 0.50 90.62� 2.6 1.00
10 m-of-n-3-7-10 85.55� 1.1 77.34� 1.3 0.00 85.16� 1.1 0.36 87.50� 1.0 0.97
11 Monk1 75.69� 2.1 97.22� 0.8 1.00 88.89� 1.5 1.00 72.22� 2.2 0.05
12 Monk2-local 70.37� 2.2 95.60� 1.0 1.00 88.43� 1.5 1.00 67.13� 2.3 0.07
13 Monk2 65.05� 2.3 63.89� 2.3 0.31 67.13� 2.3 0.82 67.13� 2.3 0.82
14 Monk3 97.22� 0.8 97.22� 0.8 0.50 97.22� 0.8 0.50 97.22� 0.8 0.50

Average real: 86.51 86.64 87.27 88.68
Average artif. 79.19 88.55 84.68 80.30

selection (best-�rst search forward), C4.5 with feature subset selection (backward with com-

pound operators), and Naive-Bayes with feature subset selection (backward with compound

operators). Table 4.12 shows the number of features used by C4.5 and C4.5 with feature

subset selection. The following observations can be made:

1. For real datasets, ID3-FSS and C4.5 perform approximately the same, but ID3-FSS

uses fewer features. For the arti�cial datasets, ID3-FSS signi�cantly outperforms

C4.5 on three datasets (corral, Monk1, Monk2-local), and is signi�cantly inferior in

one (m-of-n-3-7-10).

2. C4.5-FSS signi�cantly outperforms C4.5 on two real datasets (cleve and DNA), two

arti�cial datasets (Monk1 and Monk2-local), and is never signi�cantly outperformed

by C4.5. The relative error is reduced by 5.6% for real datasets and by 26.4% for the

arti�cial datasets.

3. What is perhaps most interesting is how C4.5 and Naive-Bayes with feature subset
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Figure 4.20: ID3: Absolute di�erence (FSS-ID3 minus C4.5) in accuracy (left) and in std-
devs (right).
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Figure 4.21: C4.5: Absolute di�erence (FSS-C4.5 minus C4.5) in accuracy (left) and in
std-devs (right).

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Dataset #

NB-FSS minus C4.5 (abs acc)

-2

2

4

6

8

10

Acc

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Dataset #

NB_FSS minus C4.5 (s.d.)

-2

-1

1

2

3

4

5

s.d.

Figure 4.22: NB: Absolute di�erence (FSS-NB minus C4.5) in accuracy (left) and in std-devs
(right).
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Table 4.12: The number of features in the dataset, the number used by C4.5, and the
number selected by C4.5-FSS

Dataset Original C4.5 C4.5-FSS
dataset Backward

1 breast cancer 10 7.0 3.9
2 cleve 13 9.1 5.3
3 crx 15 9.9 7.7
4 DNA 180 46 12
5 horse-colic 22 5.5 4.3
6 Pima 8 8.0 4.8
7 sick-euthyroid 25 4 3
8 soybean-large 35 22.0 17.1

9 corral 6 4 2
10 m-of-n-3-7-10 10 9 6
11 Monk1 6 5 3
12 Monk2-local 17 12 6
13 Monk2 6 6 0
14 Monk3 6 2 2

selection compare. While there are datasets for which either one is better than the

other, on the real datasets, C4.5 is signi�cantly better only for the horse-colic dataset,

but Naive-Bayes is signi�cantly better for cleve, DNA, Pima, and soybean-large. The

relative error of Naive-Bayes is smaller by 16.1%. For the arti�cial datasets, the two

are about equal: C4.5 is signi�cantly better on two datasets (Monk1, Monk2-local),

and Naive-Bayes is better on two (corral, m-of-n-3-7-10).

In summary, feature subset selection using the wrapper approach signi�cantly improves

ID3, C4.5 and Naive-Bayes on the datasets tested. Perhaps the most surprising result is how

well Naive-Bayes performs on real datasets once discretization and feature subset selection

are done.

4.7 Over�tting

Still, it is an error to argue in front of your data. You �nd yourself insensibly
twisting them round to �t your theories.

|Sherlock Holmes / The Adventure of Wisteria Lodge.

An induction algorithm over�ts the dataset if it models the given data too well and its



CHAPTER 4. WRAPPERS 115

predictions are poor. An example of an over-specialized hypothesis, or classi�er, is a lookup

table on all the features. Over�tting is closely related to the bias-variance tradeo� (Geman

et al. 1992, Breiman et al. 1984): if the algorithm �ts the data too well, the variance term

is large, and hence the overall error is increased.

Most accuracy estimation methods, including cross-validation, evaluate the predictive

power of a given hypothesis over a feature subset by setting aside instances (holdout sets)

that are not shown to the induction algorithm and using them to assess the predictive ability

of the induced hypothesis. A search algorithm that explores a large portion of the space

and that is guided by the accuracy estimates can choose a bad feature subset: a subset with

a high accuracy estimate but poor predictive power.

If the search for the feature subset is viewed as part of the induction algorithm, then

overuse of the accuracy estimates may cause over�tting in the feature-subset space. Because

there are so many feature subsets, it is likely that one of them leads to a hypothesis that

has high predictive accuracy for the holdout sets. A good example of over�tting can be

shown using a no-information dataset (Rand) where the features and the label are com-

pletely random. The top graph in Figure 4.23 shows the estimated accuracy versus the

true accuracy for the best node the search has found after expanding k nodes. One can

see that especially for the small sample of size 100, the estimate is extremely poor (26%

optimistic), indicative of over�tting. The bottom graphs in the �gure show over�tting in

small real-world datasets.

Recently, a few machine learning researchers have reported the cross-validation estimates

that were used to guide the search as a �nal estimate of performance, thus achieving overly

optimistic results. Instead, experiments using cross-validation to guide the search must

report the accuracy of the selected feature subset on a separate test set or on holdout sets

generated by an external loop of cross-validation that were never used during the feature

subset selection process.

The problem of over�tting in feature subset space has been previously raised in the

machine learning community by Wolpert (1992a) and Scha�er (1993), and the subject has

received much attention in the statistics community (cf. Miller (1990)).

Although the theoretical problem exists, our experiments indicate that over�tting is

mainly a problem when the number of instances is small. Kohavi & Sommer�eld (1995a)

reported that out of 70 searches for feature subsets with datasets containing over 250 in-

stances, ten searches were optimistically biased by more than two standard deviations and
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Figure 4.23: Over�tting in feature subset selection. The top graph shows the estimated
and true accuracies for a random dataset and ID3. The solid line represents the estimated
accuracy for a training set of 100 instances, the thick grey line for a training set of 500
instances, and the dotted line shows the real accuracy. The bottom graphs graphs show the
accuracy for real-world datasets. The solid line is the estimated accuracy, and the dotted
line is the accuracy on an independent test set.
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one was pessimistically biased by more than two standard deviations. While the problem

clearly exists, it is not very severe, especially for large datasets.

4.8 Feature Subset Selection as Search With Probabilistic

Estimates

Even the best decision has a high probability of being wrong. Even the
most e�ective one eventually becomes obsolete.

|Peter Drucker, The E�ective Executive

We now look at the problem of feature subset selection as search with probabilistic estimates.

This abstract view generalizes the problem, and we believe it can lead to new practical

results, if the abstract problem can be solved using a di�erent approach than the one used

in previous sections.

The wrapper approach, which uses accuracy estimation as the evaluation and heuristic

function, complicates the common state-space search paradigm. The fact that the accuracy

estimation is a random variable implies that there is uncertainty in the returned estimate.

One way to decrease the variance is to run the accuracy estimation (e.g., k-fold cross-

validation) more than once and average the results, as we have done. Increasing the number

of runs shrinks the con�dence interval for the mean, but requires more time. The tradeo�

between more accurate estimates and more extensive exploration of the search space is

referred to as the exploration versus exploitation problem (Kaelbling 1993) and leads to the

following abstract search problem.

De�nition 4.7 (Search with Probabilistic Estimates)

Let S be a state space with operators between states. Let f : S 7! R be an unbiased

probabilistic evaluation function that maps a state to a real number, indicating how good

the state is. The number returned by f(s) comes from a distribution D(s) with mean f�(s),

which is the actual (unknown) value of the state. The goal is to �nd the state s with the

maximal value of f�(s).

The mapping of this de�nition to the feature subset selection problem is as follows. The

states are the subsets, and the operators are the common ones (add, delete, compound). The

evaluation function is the accuracy estimation accuracy. Although some accuracy estimation

techniques, such as cross-validation, are biased, they can be viewed as unbiased estimators
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for a di�erent quantity; for example, k-fold cross-validation is unbiased for datasets of size

m�m=k (see Section 3.4.1). Furthermore, for model selection, this pessimism is of minor

importance because the bias may cancel out. We now describe work that falls under this

general framework of search with probabilistic estimators:

Greiner (1992) described how to conduct a hill-climbing search when the evaluation

function is probabilistic. The algorithm stops at a node that is a local optimum with high

probability, based on the Cherno� bound. Yan & Mukai (1992) analyzed an algorithm

based on simulated annealing and showed that it will �nd the global optimum if given

enough time.

Maron & Moore (1994), in an approach very similar to Greiner's, attempted to shrink

the con�dence interval of the accuracy for a given set of models, until one model can be

proven to be optimal with high probability. The evaluation function is a single step in leave-

one-out cross-validation, i.e., the algorithm is trained on randomly chosen n � 1 instances

and tested on the one that is left. The induction algorithm used is instance-based learning,

which leads to an extremely fast evaluation because training is not necessary. A step of

leave-one-out is merely a test of whether an instance is classi�ed correctly by its nearest-

neighbor. Note, however, that f(s) always returns either a zero or a one. The instance is

either correctly classi�ed, or not. This step must be repeated many times to get a reasonable

con�dence bound.

The general idea is to race competing models, until one is a clear winner. Models

drop out of the race when the con�dence interval of the accuracy does not overlap with

the con�dence interval of the accuracy of the best model (this is analogous to imposing a

higher and lower bound on the estimation function in the B� algorithm (Berliner 1981)).

The race ends when there is a winner, or when all n steps in the leave-one-out cross-

validation have been executed. The con�dence interval is de�ned according to Hoe�ding's

formula (Hoe�ding 1963):

Pr
����f�(s)� bf (s)��� > �

�
< 2e�2m�2=B2

where bf(s) is the average ofm evaluations and B bounds the possible spread of point values.

Given a con�dence level, one can determine �, and hence a con�dence interval for f�(s),

from the above formula. The paper (Maron & Moore 1994), however, does not discuss any

search heuristic, and assumes that a �xed set of models is given by some external source.



CHAPTER 4. WRAPPERS 119

Moore & Lee (1994) describe an algorithm for feature subset selection that has both

ingredients of the abstract problem: it has a search heuristic, and it uses the probabilistic

estimates in a non-trivial manner.

The algorithm does a forward selection and backward elimination, but instead of esti-

mating the accuracy of each added (deleted) feature using leave-one-out cross-validation,

all the features that can be added (deleted) are raced in parallel. Assuming that the distri-

bution of f(s) is normal, con�dence intervals are used to eliminate some features from the

race.

Schemata search is another search variant that allows taking into account interactions

between features. Instead of starting with the empty or full set of features, the search

begins with the unknown set of features. Each time a feature is chosen and raced between

being \in" or \out." All combinations of unknown features are used in equal probability,

thus a feature that should be \in" will win the race, even if correlated with another feature.

Although this method uses the probabilistic estimates in a Bayesian setting, the basic search

strategy is simple hill-climbing.

4.9 Automatic Parameter Tuning for C4.5

Too many machine learning programs su�er from an extreme case of this
de�ciency [requirement for parameter tuning], which is named the \China

Syndrome" because sometimes the only person who is able to make a program
run is in China.

|Buchanan, 1987 talk [paraphrased in Catlett (1991a)]

We now describe an application of the wrapper approach to parameter tuning for the C4.5

induction algorithm (Quinlan 1993). The C4.5-AP algorithm is a wrapper around C4.5 that

attempts to automatically tune some parameters in C4.5 that can be adjusted.

We chose to automatically set all of the C4.5 tree-building parameters (m,c,g, and s)

shown in Table 4.13. The g and s parameters are Boolean and the m and c parameters are

continuous, so we discretized them as shown in Table 4.14. The decision to discretize the

continuous values in a non-linear way was based on our observations that �ne granularity

was not important for large values of the parameters. There are are a total of 1156 possible

states, so a search engine must be used to avoid trying all of them. In our experiments, we

used best-�rst search. The operators are de�ned such that each node, de�ning a vector of

values for these parameters, is connected to all nodes that vary on one parameter, which
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Table 4.13: Parameters to the C4.5 algorithm.

Possible Default
Name Values Value Description

mm 1 : : :1 2 Stopping parameter in tree construction. Halts the recur-
sive partitioning process when no partition of the current
node results in children all having weight � m. (Weight is
equal to the number of instances unless there are missing
values.)

cc [0; 100] 25 Con�dence level parameter in tree pruning. Small values
of c cause heavy pruning, large values cause little pruning.

g on,o� o� Splitting criterion: information gain or gain ratio. When
g is speci�ed, information gain is used as the splitting
criterion in tree construction. When not speci�ed, gain
ratio is used.

s on,o� o� Subset splits. When s is speci�ed, subset splits are con-
sidered during tree construction. When unspeci�ed, all
splits on k-valued nominal features result in k children.

is either adjacent to the current value or �ve entries away in the array of possible values.

More formally, for the binary parameters, there is an operator to the opposite value; for

each of the numeric parameters, there is an operator increasing or decreasing the value by

going one position or �ve positions up or down in the array of possible values (Table 4.14).

The initial state is the default setting for C4.5: (m = 2; c = 25; no g; no s).

Table 4.15 and Figure 4.24 show C4.5 and C4.5 with automatic parameter tuning using

the wrapper approach. The following observations can be made:

1. For the real datasets, there is little improvement on average: 5.3% reduction in the

error rate. Most di�erences are insigni�cant, except for the cleve dataset, which is

signi�cant with a p-value of 0.99.

2. For all the arti�cial datasets, the accuracy either remained the same (Monk3) or

improved (the rest). Four datasets (corral, mofn, Monk1, Monk2-local) signi�cantly

improved with a p-value of 1.00. The dataset Monk2, improved slightly by increasing

the pruning factor so much (c was set to 4), that the tree was pruned down to a single

node, predicting the majority class.
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Table 4.14: The state space searched by C4.5-AP.

Parameter Considered Values

m 1,2,3,4,5,10,15,20,25,30,40,50,60,70,80,90,100
c 1,2,3,4,5,10,15,20,25,30,40,50,60,70,80,90,100
s on,o�
g on,o�

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Dataset #

C4.5-AP minus C4.5 (abs acc)

5

10

15

Acc

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Dataset #

C4.5-AP minus C4.5 (s.d.)

2

4

6

s.d.

Figure 4.24: C4.5: Di�erence of accuracy between automatic parameter tuning and original
C4.5. Absolute di�erence on the left, and in std-devs on the right.

Given these results, it is hard to judge whether C4.5 with automatic parameter tuning

(C4.5-AP) is signi�cantly superior to C4.5. In Kohavi & John (1995), an extensive com-

parison was made using 33 datasets, and we repeat the main results in Table 4.16. (A

slightly di�erent search scheme was used, but the di�erences are minor and not important.)

Figure 4.25 depicts the accuracies on a scatter plot, where C4.5-AP's accuracy is on the x

axis, and C4.5's is on the y-axis. Points below the 45 degree line indicate that C4.5-AP is

outperforming C4.5.

In this large scale experiment, there were nine signi�cant di�erences in favor of C4.5-AP

(at the 90% signi�cance level), and only one signi�cant result in favor of C4.5. At a 95%

con�dence level, C4.5-AP outperformed C4.5 on six datasets, and is never outperformed by

C4.5. In the one case where C4.5-AP loses at a 90% con�dence level, the labor-negotiation

dataset, note that the entire dataset is very small with only 57 instances. The parameters

chosen varied widely, with the �m1 parameter chosen in many cases. Changing C4.5's

default parameter to �m1 did not give better average performance over all datasets. While

the results from the large scale experiment were very encouraging, the average reduction in
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Table 4.15: C4.5 versus C4.5 with automatic parameter tuning.

Dataset C4.5 C4.5-AP p-val

1 breast cancer 95.42� 0.7 95.00� 0.8 0.29
2 cleve 72.30� 2.2 77.57� 2.5 0.99
3 crx 85.94� 1.4 84.49� 1.4 0.14
4 DNA 92.66� 0.8 92.41� 0.8 0.37
5 horse-colic 85.05� 1.2 84.51� 0.8 0.29
6 Pima 71.60� 1.9 73.56� 1.9 0.85
7 sick-euthyroid 97.73� 0.5 97.82� 0.5 0.58
8 soybean-large 91.35� 1.6 92.38� 1.1 0.77

9 corral 81.25� 3.5 100.00� 0.0 1.00
10 m-of-n-3-7-10 85.55� 1.1 91.99� 0.9 1.00
11 Monk1 75.69� 2.1 83.33� 1.8 1.00
12 Monk2-local 70.37� 2.2 83.33� 1.8 1.00
13 Monk2 65.05� 2.3 67.13� 2.3 0.82
14 Monk3 97.22� 0.8 97.22� 0.8 0.50

Average real: 86.51 87.22
Average artif. 79.19 87.17

relative error, which was 13%, was mostly a result of improvements on arti�cial datasets.

The average improvement for the real datasets was 6.4%, a similar result to the one we

achieved for the common datasets in this dissertation.

Table 4.16 has an extra column, C4.5*, which is the accuracy achieved when the heuristic

evaluation function was the accuracy on the actual test set. The C4.5* results cannot

realistically be achieved in practice, but they show an upper bound to our approach: even

if we were to use the perfect error estimation method instead of cross-validation, we could

never surpass the C4.5* results.

4.10 Related Work

Opalko's Observation: The probability of one's supervisor entering one's
o�ce unannounced is inversely proportional to the work-relatedness of the

activity one is engaged in at the time.
|Unix fortune

We now review related work in three areas: feature subset selection, parameter tuning,

and the wrapper approach.
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Table 4.16: Accuracies for the C4.5, C4.5-AP, and C4.5* upper bound, which uses the test
set as the evaluation function (instead of cross-validation). P (t) gives the p-value of a paired
t-test for the folds, and the \Better" column indicates signi�cantly better at the 90% level.

Dataset Size Accuracy P (t) C4.5-AP
Default C4.5 C4.5-AP C4.5* Better

australian 690 85.36�1.13 85.07�1.47 88.70�1.58 .372
breast (W) 699 95.42�0.70 96.29�0.77 96.98�0.74 .961 X

breast (L) 286 73.87�2.76 73.87�2.76 77.68�1.90 .500
chess 3196 99.50�0.13 99.62�0.10 99.75�0.08 .800
cleve 303 72.30�2.17 75.61�2.43 84.82�1.42 .931 X

corral 32/129 81.20�3.44 100.00�0.00 100.00�0.00 1.00 X

crx 690 85.94�1.37 85.07�1.26 88.84�0.87 .186
diabetes 768 71.75�1.02 75.26�1.26 82.03�1.42 .984 X

DNA 2000/1186 92.30�0.77 93.20�0.73 93.2�0.73 .800
german 1000 72.50�1.41 72.70�1.65 79.42�1.45 .553
glass 214 65.48�3.22 68.20�2.92 76.17�2.69 .847
glass2 163 70.55�2.00 74.85�3.94 87.61�2.96 .789
heart 270 80.00�2.77 82.22�2.19 86.11�1.90 .703
hepatitis 155 80.04�3.65 84.50�2.47 89.67�2.98 .924 X

horse-colic 368 85.05�1.16 84.24�0.78 88.86�0.85 .139
hypothyroid 3163 99.11�0.18 99.27�0.08 99.40�0.21 .894
iris 150 95.33�1.42 95.33�1.42 95.33�1.42 .500
labor-neg 57 85.67�3.48 80.67�3.87 89.00�3.02 .097 �
letter 15000/5000 86.80�0.48 87.00�0.48 87.10�0.48 .620
lymphography 148 78.38�1.65 74.14�3.19 86.48�1.41 .103
Monk1 124/432 75.70�2.06 100.0�0.00 100.0�0.00 1.00 X

Monk2 169/432 65.00�2.29 62.50�2.33 82.40�1.83 .220
Monk3 122/432 97.20�0.79 97.20�0.79 100.00�0.00 .500
mushroom 8124 100.00�0.00 100.00�0.00 100.00�0.00 .500
Pima 768 71.60�1.93 76.67�2.05 79.55�1.55 .999 X

satimage 4435/2000 85.20�0.79 86.10�0.77 85.20�0.79 .790
segment 2310 96.36�0.33 96.80�0.37 97.75�0.36 .846
sick-euthyroid 3163 97.69�0.25 97.63�0.46 98.20�0.19 .444
soybean 47 100.00�0.00 100.00�0.00 100.00�0.00 .500
tic-tac-toe 958 85.59�1.08 93.73�0.52 96.34�0.65 1.00 X

vehicle 846 69.84�1.77 72.44�1.73 78.18�0.94 .973 X

vote 435 95.64�0.52 95.41�0.47 97.71�0.68 .172
vote1 435 88.02�1.77 87.58�1.52 92.40�1.20 .342
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Figure 4.25: Accuracies of the 33 datasets. C4.5-AP on x-axis and original C4.5 on y axis.
Points below the 45 degree line indicate that C4.5-AP is outperforming C4.5.

4.10.1 Feature Subset Selection

The pattern recognition literature (Devijver & Kittler 1982, Kittler 1986, Ben-Bassat 1982),

statistics literature (Draper & Smith 1981, Miller 1984, Miller 1990, Neter et al. 1990), and

recent machine learning papers (Almuallim & Dietterich 1991, Almuallim & Dietterich

1994, Kira & Rendell 1992a, Kira & Rendell 1992b, Kononenko 1994) consist of many such

measures for feature subset selection that are all based on the data alone.

Most measures in the pattern recognition and statistics literature are monotonic, i.e.,

for a sequence of nested feature subsets F1 � F2 � � � � � Fk , the measure f obeys f(F1) �
f(F2) � � � � � f(Fk). Notable selection measures that do satisfy monotonicity assumption

are residual sum of squares (RSS), adjusted R-square, minimum mean residual, Mallow's Cp

(Mallows 1973), discriminant functions, and distance measures, such as the Bhattacharyya

distance and divergence. The PRESS measure (Prediction sum of squares), however, does

not obey monotonicity. For monotonic functions, branch and bound techniques can be used
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to prune the search space. Furnival & Wilson (1974) show how to compute the residual sum

of squares (RSS) for all possible regressions of k features in less than six (!) oating-point

operations per regression; furthermore, the technique can be combined with branch and

bound algorithms as described in their paper.3 Narendra & Fukunaga (1977) apparently

rediscovered the branch-and-bound technique, which was later improved in Yu & Yuan

(1993). Most machine learning induction algorithms do not obey monotonic restrictions,

and so this type of dynamic programming cannot be used. Even when branch and bound

can be used, the search is usually exponential, and when there are more than 30 features,

suboptimal methods are used.

Searching in the space of feature subsets has been studied for many years. Sequential

backward elimination, sometimes called sequential backward selection, was introduced by

Marill & Green (1963). Kittler (1978) generalized the di�erent variants including forward

methods, stepwise methods, and \plus `{take away r." Cover & Campenhout (1977) showed

that even for multivariate normally distributed features, no hill-climbing procedure that uses

a monotonic measure and that selects one feature at a time can �nd the best feature subset

of a desired size; even a 2-1 algorithm that adds the best pair and removes the worst single

feature can fail. More recent papers attempt to use AI techniques, such as beam search

and bidirectional search (Siedlecki & Sklansky 1988), best-�rst search (Xu, Yan & Chang

1989), and genetic algorithms (Vafai & De Jong 1992, Vafai & De Jong 1993). All the

algorithms described above assume that the evaluation function is deterministic. Langley

(1994) reviewed feature subset selection methods in machine learning and contrasted the

wrapper and �lter approaches.

The theory of rough sets de�nes notions of relevance that are closely related to the

ones de�ned here (Pawlak 1991). Pawlak (1993) wrote that one of the most important and

fundamental notions to the rough sets philosophy is the need to discover redundancy and

dependencies between features, and there has been a lot of work on feature subset selec-

tion coming from the rough sets community (cf. Modrzejewski (1993) and Ziarko (1991)).

While the goal of �nding a good feature subset is the same, Kohavi & Frasca (1994) have

claimed that relevance does not necessarily imply usefulness for induction tasks (see also

Section 4.2.3).

3The Forest Service must have been really interested in this problem. Furnival was at the School of
Forestry at Yale University, and Wilson was from the USDA Forest Service! One would think that they
should have been working on tree pruning and not on linear regression.
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Turney (1993) de�nes a feature to be primary if there is one feature value such that the

probability of a class changes when conditioned on this value. He then de�nes a contextual

feature in the same way we have de�ned strongly relevant, except that it cannot be primary.

A feature is contextual only if it helps in the context of all others. Contextual features are

harder to �nd because they involve interactions.

David Heckerman and Dan Geiger (personal communication) pointed out that a weaker

notion of relevance can be de�ned than our notion of weak relevance. We required that the

probability change for a given value, but this could be generalized to a set of values, i.e.,

the probability that some feature takes on a set of values changes.

Our principal motivation for feature subset selection was increased accuracy or increased

comprehensibility resulting from the smaller subset of features used. Some of the work on

feature subset selection was motivated by reducing the measurement costs associated with

the features: if fewer features are used, less measurements have to be taken. Because

the wrapper approach optimizes any desired function, such costs can easily be taken into

account in the evaluation function.

4.10.2 Parameter Tuning

Parameter tuning is a widely-studied problem in statistics. CART (Breiman et al. 1984)

is a prime example of the automatic setting of a parameter (the cost-complexity param-

eter) in decision tree induction. CART uses strati�ed ten-fold cross-validation to set this

parameter. There are still many parameters left to be set by the user, however, and it

would be interesting to compare a fully automated CART to the standard CART. Nearly

all statistical methods of regression contain a single smoothing parameter � (similar to the

cost-complexity parameter in CART, and the m and c parameters in C4.5), which attempts

to address the bias-variance dilemma: how to trade o� �t to the training data with some

measure of \complexity" of the model. Quinlan (1993) discusses the importance of the

C4.5 parameters, and suggests that the user manually perform a search through the space

of parameter values using cross-validation to evaluate each parameter. John (1994) reports

preliminary results on using cross-validation and exhaustive search to set the m parameter

in C4.5.
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4.10.3 The Wrapper Approach

Since the introduction of the wrapper approach, we have seen it used in a few papers that

reference our original paper (John et al. 1994). Langley & Sage (1994a) used the wrapper

approach to select features for Naive-Bayes (but without discretization) and Langley & Sage

(1994b) used it to select features for a nearest-neighbor algorithm. Pazzani (1995) used the

wrapper approach to select features and join features (create super-features that compound

others) for Naive-Bayes and showed that it indeed �nds correct combinations when features

interact. Singh & Provan (1995) and Provan & Singh (1995) used the wrapper approach to

select features for Bayesian networks and showed signi�cant improvements over the original

K2 algorithm. Street, Mangasarian & Wolberg (1995) use the wrapper in the context of

a linear programming generalizer. All the algorithms mentioned above use a hill-climbing

search engine.

Aha & Bankert (1994) used the wrapper for identifying feature subsets in a cloud classi-

�cation problem with 204 features and 1633 instances; they concluded that their empirical

results strongly support the claim that the wrapper strategy is superior to �lter methods.

Aha & Bankert (1995) compare forward and backward feature subset selection using the

wrapper approach and a beam-search engine and conclude that forward selection is better.

Mladeni�c (1995) independently extended the use of wrappers from feature subset selection

to parameter tuning. Doak (1992) has developed a method similar to the wrapper approach

independently, and compared many search engines for feature subset selection; however, he

was not aware of the fact that one should use an independent test set for the �nal estimation

and used the accuracy estimation used to guide the search (see Section 4.7).4

4.11 Future Work

Similarly, in every course and on every project there is someone who just
cannot believe that C++ features can be a�ordable and therefore sticks to the

familiar and trusted C subset for future work.
|Stroustroup (1994, p. 173)

Many variations and extensions of the current work are possible. We have examined

hill-climbing and best-�rst search engines. Other approaches could be examined, such as

4The results in both papers by Aha and Bankert, those of Mladeni�c, and those of Doak must be interpreted
cautiously because they were using the cross-validation accuracy used during the search as the �nal estimated
performance as opposed to an independent test set or an external loop of cross-validation as we have done.



CHAPTER 4. WRAPPERS 128

simulated annealing approaches that evaluate the better nodes more times (van Laarhoven

& Aarts 1987). Looking at the search, we have seen that one general area of the search

space is explored heavily when it is found to be good. It might be worthwhile to introduce

some diversity into the search, following the genetic algorithm and genetic programming

approaches (Holland 1992, Goldberg 1989, Koza 1992). The problem has been abstracted

as search with probabilistic estimates (Section 4.8), but we have not done experiments in

an attempt to understand the tradeo� between the quality of the estimates and the search

size.

The search for a good subset is conducted in a very large space. We have started the

search from the empty set of features and from the full set of features, but one can start

from some other initial node. One possibility is to estimate which features are strongly

relevant, and start the search from this subset, although compound operators seem to be a

partial answer to this problem. Another possibility is to start at random points and conduct

a series of hill-climbing searches.

The wrapper approach is very slow. For larger datasets, it is possible to use cheaper ac-

curacy estimation methods, such as holdout, or decrease the number of folds. Furthermore,

some inducers allow updating their internal structure, leading to the possibility of doing

incremental cross-validation as suggested in Kohavi (1995a), thus drastically reducing the

running time. Although C4.5 does not support incremental operations, Utgo� (1994) has

shown that this is possible, and has implemented a fast version of leave-one-out as suggested

in Kohavi (1995a).

Recently, aggregation techniques, sometimes called stacking, have been advocated by

many people in machine learning, neural networks, and Statistics (Wolpert 1992b, Breiman

1994a, Freund & Schapire 1995, Schapire 1990, Freund 1990, Perrone 1993, Krogh &

Vedelsby 1995, Buntine 1992, Kwok & Carter 1990). It is possible to build many mod-

els, each one with a di�erent parameter setting or with a di�erent feature subset, and

let them vote on the class. Aggregation techniques reduce the variance of the models by

aggregating them, but they make it extremely hard to interpret the resulting classi�er.

4.12 Summary

We have described the wrapper approach to parameter tuning and selected two problems

by which to study this approach: feature subset selection and tuning of C4.5's parameters.
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We have investigated the relevance and irrelevance of features, and concluded that weak

and strong relevance are needed to capture our intuition better. We have then shown that

these de�nitions are mainly useful with respect to an optimal rule, i.e., Bayes rule, and

that in practice one should look for optimal features with respect to the speci�c learning

algorithm at hand. Relevance does help motivate compound operators, which are currently

the only practical way to conduct backward searches for feature subsets.

The wrapper approach requires a search space, operators, a search engine, and an eval-

uation function. For the evaluation function, we used cross-validation as our accuracy

estimation technique, based on the results in Chapter 3. We have used the common search

space with add and delete operators as the basis for comparing two search engines: hill-

climbing and best-�rst search. We have then de�ned compound operators that use more

information in the children of an expanded node, not just the maximum value. These com-

pound operators make a backward search, starting from the full set of features, practical.

Best-�rst search with compound operators seems to be a strong performer and improves

ID3, C4.5, and Naive-Bayes, both in accuracy, and in comprehensibility, as measured by

the number of features used.

We have also shown some problems with this approach, namely over�tting and the large

amounts of CPU times required, and we de�ned the search problem as an abstract state

space search with probabilistic estimates, a formulation that may capture other general

problems and that might be studied independently to solve the existing problems. The

time issue seems to be the most important, although with larger amounts of data, cross-

validation can be replaced with holdout accuracy estimation for an immediate improvement

in time by a factor of �ve.

We have shown how the wrapper approach can be used to set C4.5's parameters, again

with signi�cant results, and concluded with a discussion of related work and future work.

We �nd it interesting that all the Statistics literature on feature subset selection that

we are aware of either does an exhaustive search (or a dynamic programming variant) or

a hill-climbing search, but not best-�rst search. Because the best-�rst search engine is

applicable to standard statistical measures, and because we have found it to be superior to

hill-climbing, we believe it should be used more in the Statistics community.
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Decision Tables

Write the vision, and make it plain upon tables, that he may run that readeth it.
|Habakkuk 2:2

In this chapter, we evaluate the power of feature subset selection as the only inductive

process in an inducer. After continuous features are discretized (see Section 2.3), a set of

features is selected by the induction algorithm, and a decision table is built by projecting

the training set on the selected set of features. Given an unlabelled test instance, the

classi�er, called DTM (Decision Table Majority), predicts the majority class of the training-

set instances whose values on the selected set of features match the test instance; if no

instances are found, the classi�er \gives up" and predicts the majority of the whole training

set.

One advantage of decision tables is that they can easily be updated. Instances can be

inserted and deleted quickly, thus allowing incremental cross-validation to be performed.

The time required to cross-validate the DTM induction algorithm and a dataset is linear

in the number of instances, the number of features, and the number of label values. The

time for incremental cross-validation is independent of the number of folds chosen, hence

leave-one-out cross-validation and ten-fold cross-validation take the same time.

We have designed DTM as a simple classi�er on purpose. The motivation is to see how

much of inductive power comes only from selecting a good set of features.

130
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5.1 Introduction

Everything should be as simple as possible, but no simpler.
|Albert Einstein (1879-1955)

The results on feature subset selection in Chapter 4 showed that a small subset of

features su�ces to make accurate predictions in many real-world problems. For example,

Table 4.12 on page 114 showed that when C4.5-FSS-backward was used as the induction

algorithm, only 3 features out of 25 were needed to make accurate predictions in the sick-

euthyroid domain, only 12 features out of 180 were needed to make accurate predictions in

the DNA domain, and only about 3.9 features out of 10 were needed to make predictions

in the breast-cancer domain.

In this chapter, we investigate the power of one of the simplest hypothesis spaces possi-

ble: a decision table with a default rule mapping to the majority class. This representation,

called DTM (Decision Table Majority), has two components: a schema, which is a set of

features that are included in the table, and a body consisting of labelled instances from the

space de�ned by the features in the schema. To build a DTM, the induction algorithm must

decide which features to include in the schema and which instances to store in the body.

In this chapter, we assume that the full training set is stored in the decision table; the only

inductive process is thus selecting the feature subset for the schema. We select the features

using the wrapper approach as de�ned in Chapter 4.

The goal of this chapter is to evaluate the representation power of DTMs, which will

then indicate how much of the generalization power comes from selecting a globally good

set of features. While we use a speci�c technique for selecting the features, the wrapper

approach, our aim is not to show that the speci�c method for selecting features is good,

but rather to show that at least one method for selecting the schema works well. It is

conceivable that other methods, perhaps better and faster, exist.

This chapter is organized as follows. In Section 5.2, we formally de�ne DTMs and

the problem of �nding an optimal feature subset. In Section 5.3, we briey describe the

induction algorithm, IDTM, which is basically a null algorithm wrapped around with a

feature subset selector, and then describe incremental cross-validation, which is a way to

speed up the accuracy estimation step of the wrapper approach. In Section 5.4, we describe

the results from experiments using IDTM. In Section 5.5, we describe related work on

decision tables. We conclude with a summary in Section 5.6.
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5.2 De�nitions

It's useless to try to plan for the unexpected. . . by de�nition!
|Alfred Hitchcock

Given a training sample containing labelled instances, an induction algorithm builds

a hypothesis in some representation. The representation we investigate here is a decision

table with a default rule mapping to the majority class, which we abbreviate as DTM. A

DTM has two components:

1. A schema, which is a set of features.

2. A body, which is a multiset of labelled instances. Each instance consists of a value

for each of the features in the schema and a value for the label.

Given an unlabelled instance, ~x, the label assigned to the instance by a DTM classi�er is

computed as follows. Let I be the set of labelled instances in the DTM that exactly match

the given instance ~x, where only the features in the schema are required to match and all

other features are ignored. If I = ;; return the majority class in the DTM; otherwise, return

the majority class in I, breaking ties arbitrarily. Unknown/missing values are treated as

distinct values in the matching process.

The goal of the induction algorithm is to �nd an optimal feature subset for the decision

table. Formally, Let ~X = fX1; : : : ; Xng be a set of features and let D be the training set.

Given a subset of features ~X 0 � ~X, denote by DTM( ~X 0;D) the DTM with schema ~X 0

and a body consisting of all instances in D projected on ~X 0. The goal of the induction

algorithm is to chose a schema ~Xopt such that

~Xopt = argmax
~X 0� ~X

acc(DTM( ~X 0;D)); (5.1)

where acc denotes the probability of the DTM correctly classifying a randomly selected

instance from the space X � Y . Note that the schema ~Xopt consists of an optimal feature

subset for a DTM under the assumption that all instances from the training set are stored

in the body of the decision table.



CHAPTER 5. DECISION TABLES 133

5.3 The IDTM Algorithm and Incremental Cross-Validation

Incremental implementation: Delivering several partial
products each for the price of a complete one
|Glossary of Software Engineering Terms

The goal of IDTM algorithm (Inducer of DTMs) is to �nd the feature subset ~Xopt that

is described in Equation 5.1. For this goal, we use the wrapper approach (Chapter 4) that

wraps around a null induction algorithm. This null induction algorithm creates a DTM from

the full dataset it receives; it does no induction of any sort, which is exactly what we want.

The wrapper selects the appropriate features to pass on to this algorithm, and it is the part

responsible for generalizing the instances into a classi�er. We use forward-selection with

compound operators because backward selection makes little sense for this null induction

algorithm (it will predict majority for any instance not in the training set). Because, as we

will explain below, the accuracy estimation is fast, we increase the stale parameter for the

wrapper from �ve to ten, allowing more feature subsets to be searched.

One of the main problems with the wrapper approach is the time it takes to evaluate a

node (a feature subset in our case). When k-fold cross-validation is used as the accuracy

estimator, the induction algorithm has to be executed k times. We now explain how to speed

up cross-validation time for algorithms that support incremental addition and deletion of

instances. We feel that this digression is important because the simple idea of incremental

cross-validation is what makes the IDTM algorithm practical.

The idea in incremental cross-validation is that instead of training k times on the union

of k � 1 folds each time, we train once on the full dataset, then for each fold we delete

the instances in the fold, test on the fold instances, and insert the instances back. The

delete-test-insert phase is repeated for each of the k folds. The name incremental is used

because this type of cross-validation can be applied to any incremental algorithm that

supports addition and deletion of instances. If the induction algorithm is guaranteed to

produce the same classi�ers in incremental mode as in batch mode, this incremental version

of cross-validation is guaranteed to produce the exact same accuracy estimate as batch

cross-validation.

Proposition 3 (Incremental Cross-Validation)

The running time of incremental cross-validation is

O(T +m(td + tc + ti)) ;
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where T is the running time of the induction algorithm on the full dataset, m is the number

of instances, and td, tc, and ti represent the time it takes to delete an instance, classify an

instance, and insert an instance, respectively.

Proof: Incremental cross-validation starts out by running the original induction algorithm

on the full dataset. Since each instance appears in exactly one fold, it is deleted once,

classi�ed once, and inserted once during the overall incremental cross-validation phase.

Example 5.1 (Incremental Cross-Validation)

Conducting k-fold cross-validating of a decision tree induction algorithm and a dataset is

deemed an expensive operation because one typically builds k decision trees from scratch,

one for each fold. However, Utgo� (1994, 1995) shows how to incrementally add and delete

instances in a manner that is guaranteed to generate the same tree as a batch algorithm.

Thus, one can incrementally cross-validate decision trees much faster.

Nearest-neighbor algorithms support incremental addition and deletion of instances by

simply adding and removing prototype points. Since these operations are fast, it can be

shown that incremental cross-validation of a dataset with m instances and n features with

a simple nearest-neighbor induction algorithm takes O(m(m � n)) time; incremental cross-
validation of a weighted regression nearest-neighbor takes O(m(m �n2+m3)) time as shown

in Maron & Moore (1994) and Moore, Hill & Johnson (1992).

We now describe the data structures that allow fast incremental operations on DTMs.

The underlying data structure that we use is a universal hash table (Cormen, Leiserson

& Rivest 1990). The time to compute the hash function is O(n0) where n0 is the number

of feature values in the DTM's schema, and the expected lookup time (given the hashed

value of the instance) is O(1) if all objects (unlabelled instances) stored are unique. To

ensure that all stored objects are unique, we store with each unlabelled instance ` counter

values, where ` is the number of label values. Each counter value ci represents the number

of instances in the training set having the same underlying unlabelled instance and label li.

To classify an instance, the unlabelled instance is found in the hash table and the label

matching the highest counter value is returned.1 The overall expected time to classify an

instance is thus O(n0 + `).

1The running time could be further decreased to O(n0) by computing the majority of every unlabelled
instance in advance, but the counters are needed for the incremental operations.
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To delete an instance, the underlying unlabelled instance is found and the appropriate

label counter is decreased by one; if all counters are zero, the underlying unlabelled instance

is deleted from the table. To insert an instance, we search the underlying unlabelled in-

stance; if it is found, the appropriate label counter incremented; otherwise, a new instance

is added. Class counts must be kept for the whole body of the DTM in order to change the

majority class.

Corollary 4 (Incremental Cross-Validation of IDTMs)

The overall time to cross-validate an IDTM with n0 features in the schema and a dataset

with m instances and ` label values is O(m(n0 + `)).

Proof: All DTM operations have time complexity td = tc = ti = O(n0 + `). The overall

time to build a DTM from scratch is the same as m insertions; thus by Proposition 5.1, the

overall time for the cross-validation O(m(n0 + `)).

5.4 Experiments with IDTM

The fundamental principle of science, the de�nition almost, is this:
the sole test of the validity of any idea is experiment.

|Richard Phillips Feynman (1918-1988)

Our experiments with IDTM are aimed at showing the power of feature subset selection,

but the wrapper approach is not perfect because it does a limited search and because it uses

cross-validation at each node (feature subset) for accuracy estimation. In a manner similar

to the upper bound computed on the C4.5 wrapper, C4.5�, in Section 4.9 on page 119, we

compute an upper bound on the accuracy of IDTM, which we refer to as IDTM�. The

upper bound is computed by using the test set to estimate the accuracy of each feature

subset in the wrapper (but the test set is not used in building the DTM's body) and by

increasing the stale parameter of the wrapper to 30. We stress that this upper bound may

not be achievable in practice because we may be over�tting the test set. IDTM� is an upper

bound on the possible performance, not an induction algorithm.

Table 5.1 and Figure 5.1 show a comparison of C4.5 and IDTM. The following observa-

tions can be made:

1. On the real datasets and at the 90% con�dence level, IDTM signi�cantly outper-

forms C4.5 on three datasets (cleve, DNA, Pima) and is signi�cantly inferior on only
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Table 5.1: A comparison of C4.5, IDTM, and IDTM�. The p-val column indicates the
probability that IDTM is better than C4.5.

Dataset C4.5 IDTM p-val IDTM�

1 breast cancer 95.42� 0.7 95.42� 0.7 0.50 98.71�0.50
2 cleve 72.30� 2.2 75.24� 2.3 0.91 92.40�2.04
3 crx 85.94� 1.4 85.51� 1.3 0.37 91.74�0.68
4 DNA 92.66� 0.8 94.60� 0.7 1.00 94.94�0.64
5 horse-colic 85.05� 1.2 83.68� 1.4 0.15 92.94�1.08
6 Pima 71.60� 1.9 76.04� 1.5 0.99 78.24�1.38
7 sick-euthyroid 97.73� 0.5 97.35� 0.5 0.21 97.44�0.49
8 soybean-large 91.35� 1.6 85.64� 1.2 0.00 92.23�0.88
9 corral 81.25� 3.5 100.00� 0.0 1.00 100.00�0.00
10 m-of-n-3-7-10 85.55� 1.1 77.34� 1.3 0.00 99.22�0.28
11 Monk1 75.69� 2.1 100.00� 0.0 1.00 100.00�0.00
12 Monk2-local 70.37� 2.2 100.00� 0.0 1.00 100.00�0.00
13 Monk2 65.05� 2.3 64.35� 2.3 0.38 81.94�1.85
14 Monk3 97.22� 0.8 97.22� 0.8 0.50 97.22�0.79

Average real: 86.51 86.69 92.33
Average artif. 79.19 89.82 96.40

one (soybean-large). On the other four datasets, C4.5 is slightly better, but not

signi�cantly. The average of the two inducers is about the same. Performance on

soybean-large is bad partly because it has 19 classes. Predicting majority when a

match cannot be found in the table is very inaccurate when only 13% of the instances

have the majority label.

2. On the arti�cial datasets, IDTM signi�cantly outperforms C4.5 on three datasets

(corral, Monk1, and Monk2-local) and was signi�cantly outperformed on only one

(m-of-n-3-7-10), where the wrapper did not �nd the optimal feature subset. The

average accuracy for IDTM is much higher: a 51.1% reduction in error rate.

3. Table 5.2 shows that the number of features used by IDTM is small. In fact, it is so

small that for many datasets, we can easily project the space onto two dimensions

using General Logic Diagrams (GLDs). The GLDs are shown in Appendix B.

4. The upper bounds shown by IDTM� are very high for some datasets, but close to the

performance of IDTM on others (e.g., DNA and sick-euthyroid barely improved). It
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Figure 5.1: IDTMminus C4.5: Absolute di�erence in accuracy (left) and in std-devs (right).
The std-devs graph is truncated at ten standard deviations.

is conceivable that with a better accuracy estimation, the performance of IDTM will

improve.

The running times were 5.6 hours for DNA, 2.7 hours for sick-euthyroid, 40 minutes for

soybean-large, and less than 15 minutes for all the other datasets. The results demonstrate

that IDTM can achieve high accuracy in both arti�cial and real-domains using the simple

hypothesis space of DTMs.

5.5 Related Work

Because they permit one to display succinctly the conditions that must be satis�ed
before prescribed actions are to be performed, decision tables are becoming popular in

computer programming and system design as devices for organizing logic.
|Reinwald & Soland (1966)

In the early sixties, algorithms were created to convert decision tables into optimal

computer programs (decision trees) under di�erent measures of optimality using branch

and bound procedures (Reinwald & Soland 1966, Reinwald & Soland 1967). In the early

seventies, these procedures were improved using dynamic programming techniques (Garey

1972, Schumacher & Sevcik 1976). Hya�l & Rivest (1976) showed that building an opti-

mal decision tree from instances (or from a table) is NP-complete. Hartmann, Varshney,

Mehrotra & Gerberich (1982) showed how to convert a decision table into a decision tree

using mutual information. The algorithm is very similar to ID3. All these approaches,
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Table 5.2: The number of features in the dataset, the number used by C4.5, and the number
selected by IDTM

Dataset Original C4.5 IDTM
dataset

1 breast cancer 10 7.0 2.8
2 cleve 13 9.1 4.0
3 crx 15 9.9 4.7
4 DNA 180 46 11
5 horse-colic 22 5.5 4.0
6 Pima 8 8.0 4.0
7 sick-euthyroid 25 4 2
8 soybean-large 35 22.0 9.4

9 corral 6 4 4
10 m-of-n-3-7-10 10 9 0
11 Monk1 6 5 3
12 Monk2-local 17 12 6
13 Monk2 6 6 3
14 Monk3 6 2 2

however, dealt with conversions that are information preserving, i.e., all entries in the table

are correctly classi�ed and the structures are not used for making predictions.

The rough sets community has been using the hypothesis space of decision tables for a

few years (Pawlak 1987, Pawlak 1991, Slowinski 1992). Researchers in the �eld of rough sets

suggested using the degrees-of-dependency of a feature on the label (called ) to determine

which features should be included in a decision table (Ziarko 1991, Modrzejewski 1993).

Another suggestion was to use normalized entropy (Pawlak, Wong & Ziarko 1988), which

is similar to the information gain measure of ID3 and CART.

Almuallim & Dietterich (1991) described the FOCUS algorithm which is equivalent to

�nding the DTM with the smallest number of features in the schema, such that there are

no conicting instance projections if there were none originally. An exhaustive search was

conducted to �nd this smallest feature subset, making the algorithm impractical in practice.

Almuallim & Dietterich (1992a) described FOCUS-II, which greedily selects features to

reduce the conditional entropy of the label; FOCUS-II thus �nds a small set of features

that reduces the entropy to zero. The main problem with FOCUS and FOCUS-II is that

they do not regularize or prune. In both versions, the features were selected until there
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were no conicting instances.

Almuallim & Dietterich (1992b) discussed the \Multi-balls" algorithm that has high

coverage: for a given sample size, the number of concepts it can learn in Valiant's PAC

model (Valiant 1984, Angluin 1992) is close to the upper bound of any learning algorithm.

DTMs can be viewed as a multi-balls hypothesis space because the centers are equidis-

tant by their de�nitions. However, the induction method is completely di�erent, and the

maximal number of balls a DTMs creates is less than the upper bound given by the Gilbert-

Varshamov bound, which the authors use.

A nearest-neighbor algorithm can be viewed as a generalization of a DTM with a zero

weight on each feature not included in the schema. However, while nearest-neighbor al-

gorithms use the nearest neighbor to classify instances, a DTM classi�er defaults to the

majority whenever the distance is greater than zero. Langley & Sage (1994b) used oblivious

decision trees in an algorithm called Oblivion. The hypothesis space is similar to decision

tables because the space is partitioned on a subset of features. However, when a perfect

match in the table is not found, the nearest-neighbor is used.

5.6 Summary

We have used a simple hypothesis space, the space of decision tables with a default majority

rule (DTMs), to test the conjecture that feature subset selection is a very powerful bias

(in the machine learning sense of bias). The average accuracy of IDTM on the real-world

datasets tested was equivalent to C4.5 and higher for the arti�cial datasets. We thus believe

that this bias is appropriate for problems similar to those we used. The fact that a small

subset of relevant features su�ces to learn accurate classi�ers is one good example that

the uniform assumption over target concepts that is made in the no-free-lunch theorems

(Wolpert 1994b, Scha�er 1994) is irrelevant (pun intended) to the real world.

We have shown that the resulting decision tables are very small and use few features,

allowing one to concisely display them using General Logic Diagrams (Appendix B). Al-

ternatively, one can convert the decision tables into oblivious decision trees or graphs (see

future work in Section 6.8 on page 187).

The ability to incrementally cross-validate the IDTM algorithm and a dataset in time

that is linear in the number of instances, the number of features, and the number of label

values, makes the wrapper approach feasible for large problems that would be impractical
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with other induction algorithms. The subset found for DTMs might also serve as a good

starting feature subset for running the wrapper with other induction algorithms. Of course,

it is conceivable that better and faster approaches to feature subset selection exist, that do

not use the wrapper at all.

Our goal in this chapter has not been to claim that decision tables provide a very

good hypothesis space for induction algorithms; rather, we have shown that such a simple

hypothesis space can lead to high performance, a point previously made by Holte (1993),

although he used a di�erent algorithm. The IDTM algorithm described here performs much

better than Holte's algorithm, which was signi�cantly inferior to C4.5, and it also con�rms

our conjecture that global feature subset selection alone, with an extremely simple classi�er,

provides good generalization ability.

DTMs can be improved in some obvious ways. The weakest point of the hypothesis

space is the use of the training set's majority label when a perfect match is not found. This

can be replaced with something more sensible, such as �nding a match on fewer features,

which would better estimate the density at the given test instance. Another weak point

is the fact that missing values are considered distinct values, while research indicates that

this is usually the worst possible approach to handling them (Quinlan 1989).



Chapter 6

Oblivious Read-Once Decision

Graphs

Trying to display the \prettiest" arrangement of nodes and arcs that
diagrams a given graph is like nailing jelly to a tree, because nobody's

sure what \prettiest" means algorithmically.
|The AI Hackers Dictionary

Decision trees have proven to be a good hypothesis space for many real-world concepts.

Top-down recursive-partitioning algorithms for inducing decision trees generally yield accu-

rate classi�ers, and the trees that are produced are generally comprehensible if they are not

too big. In this chapter, we look at some of the limitations of decision trees and top-down

recursive-partitioning algorithms. We propose a di�erent hypothesis space|oblivious read-

once decision graphs|and investigate its advantages and disadvantages. We propose an

algorithm for inducing oblivious decision graphs and investigate its advantages and limita-

tions. We then use the wrapper approach and an entropy-based method to overcome many

of the limitations. We experimentally compare our algorithm with C4.5, both in terms of

accuracy and in terms of comprehensibility.

141
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Figure 6.1: The smallest possible tree for the concept (A ^ B) _ (C ^ D). Note how
one term (C ^ D in the �gure) must be replicated.

6.1 Introduction

The way to eliminate bureaucracy and atten organization is by reengineering
the processes so that they are no longer fragmented. Then the company can

manage without its bureaucracy.
|Hammer and Champy, Reengineering the Corporation, 1993

Top-down algorithms for inducing decision trees generally yield accurate classi�ers, and the

trees that are produced are generally comprehensible if they are not too big. As mentioned

in Chapter 2, Michie (1987) reported that when ID3's output on the chess domain was

shown to a domain expert, i.e., a chess master, it was completely opaque. Although it was

very accurate, the tree was large, obscure, and the chess master was in a \total blackout."

The tree structure and existing algorithms for inducing decision trees su�er from some

well-known problems, most notably the replication problem and the fragmentation problem

(Cendrowska 1987, Pagallo & Haussler 1990).

The replication problem is exempli�ed by the concept (A ^ B) _ (C ^ D) shown in
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Figure 6.2: The smallest possible tree for m-of-n-3-7-10. Note how the subtrees below the
grey nodes are isomorphic.
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Figure 6.1, where the tree corresponding to the term (C ^ D) is replicated. Decision trees

must include multiple copies of subtrees implementing terms in disjunctive concepts. A

more extreme example is the decision tree shown in Figure 6.2, where the smallest decision

tree for the m-of-n-3-7-10 concept is shown. The tree has 111 nodes and 56 leaves, and

many subtrees are replicated many times. For example, the subtree below B2=1 and B3=0

is isomorphic to the subtree below B2=0 and B3=1 (both shown in grey in the �gure).

The replication problem is an inherent limitation of the decision tree structure and it

is independent of the induction algorithm. The smallest decision trees for most symmet-

ric functions|functions which yield the same value for all permutations of the input

features|are exponentially-sized. Symmetric functions, such as m-of-n, are known to oc-

cur in medical domains (Spackman 1988) and were useful in converting neural-networks

to decision rules (Towell & Shavlik 1993, Craven & Shavlik 1993). Zheng (1995) recently

showed that adding X-of-N splits to C4.5 sometimes improves the accuracy on real-world

domains. (X-of-N counts the number of features that have pre-speci�ed values; the split is

then done on a threshold value.)

The fragmentation problem is the problem of having the data fragmented at lower

levels of the tree. The fragmentation problem arises because of the top-down recursive

partitioning method commonly used to build decision trees. All common algorithms �nd

the best test to conduct at the root node of the tree (see Section 2.2 on page 19), then

split the instances according to the test, and �nally solve the subproblems recursively. If

each binary test satis�es about half the data, then after ten splits only 1/1024th of the

data trickles down to a given node. If the dataset contains m instances and the resulting

tree is approximately balanced, then the paths cannot be much longer than log2m, and the

tests conducted at lower levels are not really meaningful because they are based on a small

number of instances.

Pimat, Kononenko, Janc & Bratko (1989) report that during real experiments in medical

domains, physicians were not prepared to use the induced decision trees in practice because

the paths were too short and contained only the most informative features, which they felt

poorly described the patient, in order to make a reliable decision.1

The fragmentation problem is usually more severe when multi-valued features create

multi-way splits, as is the case with C4.5. For example, Figure 6.3 shows the unpruned

1Although the physicians were not prepared to use the decision trees in practice, the decision trees did
outperform them in terms of accuracy.
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Figure 6.3: The unpruned tree induced by C4.5 on the Monk1 problem \(head-shape =
body-shape) or (jacket-color = red)." Shaded nodes mark tests on irrelevant features.
Pruning replaces the whole subtree below (jacket-color = yellow) with a leaf marked \no."
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tree induced by C4.5 on the Monk1 problem. The shaded nodes test irrelevant features;

one reason for the splits on irrelevant features is that the �rst split is a multi-way split that

fragments the data. Quinlan (1993, p. 64) claims that groupings should be determined

from background knowledge and given in additional features. Promoting comprehensibility

and avoiding arti�cial groupings, he wrote that \Against the requirement for binary splits is

the argument that they can force arti�cial divisions|some partitions are inherently multi-

valued, as illustrated by medical triage." Although binary partitions are usually considered

a partial solution to the fragmentation problem, Kononenko (1995a) showed a counter-

example to the strong claim that they are always superior.

In this chapter, we describe Oblivious Read-Once Decision Graphs (OODGs) as an

alternative hypothesis space for supervised classi�cation learning. OODGs retain most

of the advantages of decision trees, while overcoming the replication problem mentioned

above; the induction algorithm avoids the inherent fragmentation in recursive partitioning.

OODGs are similar to Ordered Binary Decision Diagrams (OBDDs) (Bryant 1986), which

have been used in the engineering community to represent state-graph models of systems,

allowing veri�cation of �nite-state systems with up to 10120 states.2

The chapter is organized as follows. In Section 6.2, we formally de�ne OODGs and

some variants. In Section 6.3, we describe the properties of OODGs and investigate their

representational power. In Section 6.4, we describe the basic bottom-up algorithm for

inducing OODGs, but leave the two main issues open: feature ordering and incomplete

projections. In Section 6.5, we show that the problem of incomplete projections cannot be

easily solved because the decision problem is NP-hard; we then propose a greedy heuristic

for incomplete projections and for feature orderings and discuss some of the limitations of

the approach. In Section 6.6, we use the wrapper approach to select an ordering on the

features, which indirectly provides a pruning mechanism. We present experimental results

and comparisons with C4.5. We discuss related work in Section 6.7, suggest future work in

Section 6.8, and summarize in Section 6.9

2The name OODG was originally preferred over OBDD because the term decision graph was already
used in the machine learning community by (e.g., Oliver (1993)) when OODGs were introduced in Kohavi
(1994a). The features in many problems are neither binary, nor even discrete (i.e., they are continuous),
and ODD (ordered decision diagrams) was not a familiar acronym.
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6.2 De�nitions

By de�nition, one divided by zero is unde�ned.
|Unix fortune �le

In this section, we formally de�ne the OODG structure and describe some variants. The

name OODG is a combination of the terms \Oblivious" and \read-Once" that are used in

theoretical complexity analysis of branching programs, and the term \Decision Graph" that

is used in the machine learning community, most notably by Oliver (1993).

Without loss of generality, we assume that the classes are labelled 0 to k�1 and that for
each class there is at least one training instance that maps to it. We also initially assume

that the domains for all features are discrete. We will concentrate on deterministic concepts

in this chapter. We can always transform a probabilistic concept into a deterministic one

by mapping each unlabelled instance to the class with the highest posterior probability for

that unlabelled instance.

6.2.1 Decision Graphs

We begin with a description of decision graphs and then impose restrictions that make the

decision graph oblivious and read-once.

A k-classi�cation function is a deterministic function f mapping each unlabelled

instance in the instance space to one of k classes, i.e., f : ~x 7! f0; : : : ; k� 1g.
A decision graph for a k-classi�cation function over featuresX1; X2; : : : ; Xn with domains

Dom(X1); Dom(X2); : : : ; Dom(Xn), is a directed acyclic graph (DAG) with the following

properties:

1. There are exactly k leaf nodes (nodes with outdegree zero), called category nodes,

that are labelled 0; 1; : : : ; k � 1.

2. Non-category nodes are called branching nodes. Each branching node is labelled

by a feature Xi and has jDom(Xi)j outgoing edges, each labelled by a distinct value

from Dom(Xi). In the �gures shown below, we draw one edge labelled \always" if all

edges emanating from a given node branch to the same node.

3. There is one distinguished node|the root|that is the only node with indegree zero.

The class assigned by a decision graph to a given instance is determined by tracing

the unique path from the root to a category node, branching to the appropriate edge label



CHAPTER 6. OBLIVIOUS READ-ONCE DECISION GRAPHS 148

Level 0

Level 1

Level 2

(Category nodes)
Level 3

Figure 6.4: A levelled graph can be divided into levels, such that outgoing edges from each
level terminate at the next level. For example, an edge from the root to level two is not
allowed.

corresponding to the test outcome at each node. We now describe restrictions on the general

graph structure, that together yield the oblivious read-once decision graph structure:

Read-once Each feature occurs at most once along any path from the root. Although in

a decision tree branching multiple times on the same discrete feature gives no extra

power (because all instances in the subtree have the same value on a feature tested

above), branching twice on the same feature in a decision graph is known to increase

the representation power (see Section 6.2.2 on page 151).

Levelled The nodes in the graph are partitioned into a sequence of pairwise disjoint sets,

the levels, such that outgoing edges from each level terminate at the next level. Fig-

ure 6.4 shows the levels of a levelled decision graph. This restriction is weak because it

does not change the polynomial-size representation power (polynomial in the number

of features). Levelling a graph can only square its size, as dummy nodes can be added

for edges that jump to lower nodes in the graph.

Oblivious All nodes at a given level of a levelled decision graph are labelled by the same

feature. The name \oblivious" denotes the fact that testing of features depends only

on their order within the levels, independent of the input instance. The oblivious

restriction strictly limits the number of functions representable in polynomially sized
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0 11 0

0 1

Figure 6.5: Two nodes that branch the same way must be collapsed in a reduced graph.

decision graphs (see Section 6.2.3 on page 152).

Reduced There do not exist two distinct nodes at the same level that branch in exactly

the same way on the same values. If two such nodes exist, they can be collapsed into

one, as shown in Figure 6.5

An OODG is a reduced, oblivious, read-once decision graph. Figure 6.6 shows an OODG

for the Monk1 problem. The size of an OODG is the number of nodes in the graph (14 in

Figure 6.6). The width of a level is the number of nodes at that level. The width of a

graph is the width of the widest level in the graph (three in Figure 6.6). We will assume

the OODG is drawn top-down, so that the root is the highest node and the leaves are the

lowest nodes. We will use the term oblivious tree to denote a tree where all branching

nodes test the same feature at a given level.

A constant node in an OODG is a branching node where all emanating edges terminate

at the same node of the subsequent level; such a node ignores the tested feature. For

example in Figure 6.6, the left node testing jacket-color is constant, as are the nodes testing

the features has-tie, is-smiling, and holding. If a level has only constant nodes, the feature

tested at the level is irrelevant to the implemented function, and the whole level can be

removed from the graph without changing the implemented function. The levels testing the

features has-tie, is-smiling, and holding in Figure 6.6 can thus be removed. Furthermore, for

display purposes, constant nodes can also be removed, with the incoming edges redirected
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no yes

Jacket color

yellow greenblue red

Body shape

round

square octagon

Body shape

square

roundoctagon

Body shape

octagon

roundsquare

Head shape

round square octagon

Figure 6.7: An OODG for the Monk1 problem with constant nodes removed.

to the unique destination node of the edges emanating from the constant node. Figure 6.7

shows the same graph as in Figure 6.6 with constant nodes removed. The graph is not

oblivious any more, but it can always be made oblivious without an exponential increase in

size by adding the constant nodes back.

6.2.2 Comments and Variants of OODGs

While the relation between many complexity classes in computer science is unknown (e.g.,

P
?
= NP), the two main restrictions for OODGs, i.e., read-once and oblivious, both strictly

restrict the number of functions representable by polynomially-sized graphs (polynomial in

the number of features). An excellent overview of the di�erent decision graph classes and

restrictions is given in Meinel (1992). We now review some of the main results that are

relevant to understanding the structure.

Read-Once Decision Graphs

Wegener (1987) proved that the class of polynomially-sized read-once decision graphs is a

strict subset of the class of polynomially-sized read-twice decision graphs. Masek (1976)

gives an ingenious example, attributed to Michael Fredman, where reading features more

than once can be useful in reducing the size of the decision graph for a natural function. A

sketch of the idea is given in the example below.
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Example 6.1 (Read-many is more powerful than read-once)

Let f be the function that is one i� the sum of the n input bits is m. It can be shown that

a read-once decision graph must have at least m(n�m+1)+2 nodes in the graph because

the function must update the count of ones (0 to m) each time a feature is read (Masek

1976). If at any interior level (excluding the top m and bottom log2m) there are less than

m nodes, then they cannot represent the sum of ones, and the graph cannot compute the

correct function.

If, however, input features can be read multiple times, then the following scheme can be

used. The residuals of the n input bits are computed modulo di�erent prime numbers. For

each prime number p, the count of ones modulo p can be computed using O(n � p) nodes.
For a given number m, and for the �rst k prime numbers p1; : : : ; pk whose product is greater

than n, we can precompute mi = m mod pi. By the Chinese Remainder Theorem (Hardy

& Wright 1979), the set of mi's is unique. The graph can then compute the residuals of m

modulo pi for every 1 � i � k in sequence (this is where the read-many is required). If all

residuals agree with the precomputed values mi given by the Chinese Remainder Theorem,

then output one, otherwise output zero. By the Prime Number Theorem (Hardy & Wright

1979), the largest prime needed is O(logn) and there are O(logn= log logn) primes between

2 and logn. Overall, we need O(n log2 n= log logn) nodes in the decision graph, a nice

improvement over the read-once decision graph, which requires �(n2) for m = �(n).3

6.2.3 Oblivious Decision Graphs and OBDDs

The oblivious restriction by itself restricts the class of polynomially-sized functions repre-

sentable in a decision graph. It is known that for some functions there exists a polynomially

sized decision graph but not a polynomially-sized oblivious decision graph of depth O(n);

moreover, there exists a function for which the polynomially-sized decision graph is read-

once and there is no read-many polynomially-sized oblivious decision graph that is of depth

O(n) (Meinel 1992).

The oblivious and read-once restrictions together are equivalent to de�ning a total order-

ing on the features, and hence binary OODGs are isomorphic to Ordered Binary Decision

Diagrams (OBDDs) (Bryant 1986), which will be discussed further in the related work

3The � notation indicates upper and lower asymptotic bounds up to constant factors. For example, m
could be n=2.
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0 1
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Figure 6.8: An OODG for 3-bit parity. f = X1 � X2 � X3.

section (Section 6.7 on page 182). We prefer to work with the oblivious read-once deci-

sion graph structure because it is the natural representation for the learning algorithms

presented in Section 6.4.

The class of polynomially-sized decision graphs clearly includes the class of polynomially-

sized decision trees because every tree is also a graph. The added restrictions|read-once

and oblivious|change the class and makes OODGs and decision trees incomparable: some

functions can be represented in polynomially-sized OODGs but not in polynomially-sized

decision-trees and vice-versa:

1. The parity function, f = X1 � X2 � � � � � Xn (where � denotes the exclusive-or

operation), is an example of a function that can be implemented in a small decision
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graph of size 2n + 1, yet any decision tree implementing parity must have 2n+1 � 1

nodes.

Figure 6.8 shows an OODG for 3-bit parity. Nodes on the left side of the \parity

ladder" are reached when the parity is odd; nodes on the right side are reached when

the parity is even. A feature value of one causes a change of sides (as the parity

changes), while a value of zero leads down the same side.

2. Breitbart, Hunt III & Rosenkrantz (1991) showed that there exists a function over n

features that is representable in a tree of size O(n2= logn) but for which the smallest

OODG is of size 2
n

log n
�2 � (1� �n), where �n is a small number depending on n. The

function is a variant of a double multiplexer described as follows. There are k + 2k

input features, and de�ne m to be
j
2k=k

k
. Partition the k + 2k features into m + 1

groups, each consisting of k features. Let the �rst k features be used as an index to

determine which subset of k features to index (if the number represented in the �rst

k bits is greater than m, the function is zero). Once the group of k bits is indexed, we

use it as a second level index that selects a single bit from the 2k bits. The selected

bit is then the output of the function.

Because OODGs and decision trees are incomparable, there will be problems for which

one is better suited than another. If features are relevant all throughout the space, then the

oblivious restriction is appropriate; however, if di�erent subspaces have di�erent relevant

features, as is the case with multiplexer-type functions (see below), then forcing the graph

to be oblivious will require learning a large structure and the learning rate will be slower.

Although we are investigating the representation power of OODGs and trees, it is worth

noting that the same problems for which decision tree structures are more compact are also

those for which the greedy measures used by most algorithms for building decision trees are

ill-suited, as the following two examples show.

Example 6.2 (Union of two datasets)

Suppose we take two datasets and create a combined dataset containing the union of their

features, plus an extra feature called \source." For each instance from the �rst dataset,

we assign the value zero to the \source" feature and random values to the features not in

the �rst dataset; for each instance from the second dataset, we assign the value one to the

\source" feature and random values to the features not in the second dataset. We now have
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a combined dataset containing m1 + m2 instances, where m1 and m2 are the number of

instances in the �rst and second datasets, respectively.

To make the example more concrete, suppose we were to combine the horse-colic and

sick-euthyroid datasets. Each instance would be marked as \horse" or \person" in the added

feature called \source," and the target concept would then be \a horse with a surgical lesion

or a person that is sick."

The combined dataset is truly decomposable: once we test on the feature \source,"

we decomposed the original problem into the problem of learning the two original datasets

separately, a much easier task. However, if the two datasets contain approximately the same

proportions of each class, then there would seem to be no information gain from splitting

on the feature \source" and other features would be chosen for the root.

The next example shows a more extreme example of a decomposable problem.

Example 6.3 (Multiplexers are hard for decision tree inducers)

In the multiplexer domain, there are ` \address bits" and 2` \data" bits. An instance is

labelled positive i� the data bit indicated by the numerical interpretation of the address

bits is set to one.

Although multiplexer-type functions have a small representation in a decision tree, they

are known to be very hard to learn using existing top-down recursive partitioning approaches

(Wilson 1987). Quinlan (1988) observed that there is no information gain (mutual infor-

mation is zero) from a split on an address bit at the root because due to symmetry there

are an equal number of instances for each class in each child node. Decision tree inducers

that do not employ `-level lookahead will always pick a data bit at the root, creating a tree

much larger than the best one.4

As the examples show, practical learning algorithms are very limited in the search they

conduct for small structures because �nding the smallest structure that approximately �ts

the data is usually NP-hard (Hya�l & Rivest 1976, Hancock 1989, Judd 1988, Blum & Rivest

1992). It is both the type of search and the hypothesis space that ultimately determine the

degree of success of an induction algorithm.

4Utgo� (1994, 1995) has recently proposed a \direct metric" for decision tree induction, which measures
the depth of the tree that would be created if a given feature was used as the root split. The feature that
minimizes this criterion is chosen to be the root split. The metric can be e�ciently computed using an
incremental decision tree algorithm, such as ITI, and seems to be well-suited for decomposable problems,
including the multiplexer problem.
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6.3 Properties of OODGs

Randomness: The property required to make
statistical calculation come out right.

|Unix fortune

In this section, we describe some properties of OODGs. We begin with the basic properties,

which were known for OBDD and therefore hold for OODGs, then give an upper bound on

the width of levels in OODGs, and �nally give an adjacency condition that can be used to

prove properties for the bottom-up construction algorithm. Note that there is no inductive

process in this section and that all features are assumed to be discrete.

6.3.1 Basic Properties

The following properties are true for OODGs and OBDDs:

� An OODG can represent any discrete k-classi�cation function.

This property is easy to see: build an oblivious tree that splits on all the features in

any order. The leaves of the tree uniquely de�ne the value of the function at each set

of values. The tree can then be collapsed into an OODG.

� Closure under negation: an OODG for a Boolean function f of size s can be converted

into an OODG to implement f with no change in the size.

This property is obvious: simply reverse the labels for the two leaves. Note that many

hypothesis spaces, such as DNF (disjunctive normal form) and CNF (conjunctive

normal form) are not closed under negation for polynomially-sized formulas.

� For any k-classi�cation function f , and for a given ordering of the features for the

levels, there is a unique (up to isomorphism) OODG implementing f .

This property is not surprising because an OODG is very similar to a deterministic

�nite automaton that has been \unrolled" to avoid cycles. The proof for OBDDs can

be found in Bryant (1986) and easily generalized to non-binary graphs.

� There exist functions that have a polynomial (or even linear) size OODG represen-

tation under one feature ordering, and an exponential size OODG under another

ordering.
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One such example for Boolean features is

(X1 ^ X2) _ (X3 ^ X4) _ � � � _ (X2n�1 ^ X2n):

The ordering X1; X2; : : : ; X2n yields a graph with O(n) nodes, while the ordering

X1; Xn+1; X2; Xn+2; : : : ; Xn; X2n requires at least 2
n nodes.

� There are functions for which no feature ordering results in a polynomial size OODG

representation (the Shannon e�ect).

This property can easily be shown using counting arguments. There are 22
n

Boolean

functions over n features, yet for any polynomial p(n) representing an upper bound

on the size of the class of OODGs allowed, the number of bits needed to describe

the OODG is O(p(n) log p(n)) (each node can be described by O(log p(n)) bits for

the node number and two edges). The number of Boolean functions that can be

represented is thus only 2O(q(n)) for some polynomial q, and hence is vanishingly small

when compared to the family of Boolean functions over n features.

Wegener (1987, p. 417) showed that for almost all Boolean functions, the smallest

branching programs (branching programs represent a larger family than OODGs) are

at least of size (1=3)2n=n. This result provides a tight asymptotic bound (up to

constant multiplicative factors) because it is known that any Boolean function can be

represented by a branching program of size O(2n=n).

Bryant (1986) gave a \natural function" that blows up under all orderings. He showed

that at least one of the 2n bits of integer multiplication requires an exponential sized

OBDD (and hence OODG) for all orderings.

� All symmetric Boolean functions|functions which yield the same value for all permu-

tations of the features|have OODGs of size O(n2). Examples of symmetric Boolean

functions are parity, majority, \exactly k-of-n", and \at least k-of-n".

Because all symmetric functions are only based on the count of the features having

value one, the OODG needs to have at most n states per level; the total number

of branching nodes is thus bounded by n2. Representations such as decision trees,

DNF (disjunctive normal form), and CNF (conjunctive normal form), all require

exponentially-sized structures to represent such functions.
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Many other properties of OODGs and OBDDs can be found in Bryant (1992), Bryant

(1986), Meinel (1992), and Chakravarty (1993).

6.3.2 The Kite Theorem

We now present a simple theorem|the Kite Theorem|that gives an upper bound on the

width of di�erent levels of an OODG, given an instance space of Boolean features.5 This

theorem shows that the upper bound on the width of OODGs is asymmetric; the graph

of the upper bound grows much faster from the bottom than from the top. In Figure 6.9,

the width of the \kite" at each level is proportional to the maximum number of nodes

possible at that level. The kite is thus an envelope bounding both the overall size and the

speci�c width of every OODG with the given number of levels. This theorem was one of the

motivations for designing a bottom-up learning algorithm (Section 6.4); a wrong ordering

will explode fast.

Theorem 5 (Kite Theorem)

The width of level i of an OODG with n levels implementing a k-classi�cation function over

Boolean features is bounded from above by

min
n
2i; k2

(n�i)
o

Proof: The �rst term is a top-down bound; each Boolean feature can cause the number

of branching nodes to grow by a factor of at most two. The second term is a bottom-up

bound; if a level has k nodes, the level above it must have at most k2 nodes because there

are only k2 mappings from f0; 1g to f0; : : : ; k � 1g, and each mapping uniquely de�nes a

node at the level above (this is where the reduced property of OODGs is needed).

For non-Boolean (but discrete) domains, the bound in the theorem becomes

min

(
nY
i=1

jDom(Xi)j ; k
Q

n

i=1jDom(Xn�i)j
)

:

The following corollary indicates that if the OODG is worse-case in terms of its size, then

its widest level is not too far from the bottom.

5Pat Langley said that the Kite Theorem is what makes the whole idea of OODGs y.
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Corollary 6

Let n, the number of features, be greater than 3, and let ` = n� log n+log log k (all logs are

base two here). Then the level with the highest bound on the width of an OODG on Boolean

features is between b`c and d`e+ 1.

Proof: By Theorem 5, the maximum width is achieved when 2i is equal to k2
(n�i)

. The

following steps show the desired inequality.

1 2i = k2
(n�i)

From Kite Theorem

2 i = 2n�i log k Take logs

3 log i = n � i+ log log k Take logs again

4 logn � n� i+ log log k n � i

5 i � n� logn+ log log k

6 log i = n � i+ log log k Step 3 again

7 log(n=2) � n � i+ log log k By Step 5, i � n� logn � n=2

8 i � n� logn+ log log k + 1

5 + 8 n� logn+ log log k � i � n � logn + log log k + 1

Note that the Kite Theorem and its corollary give worst-case scenarios. Functions must

be bounded within the kite, but may grow and shrink inside the bound. If, when an OODG

is constructed bottom-up, the width of a level i is below the upper bound given by the Kite

Theorem, we can re-apply the theorem on the remaining features using the width at level i

as the k parameter, and thus derive a new upper bound on the �nal size of the OODG. If

the width at level i is strictly below the upper bound given by the kite theorem, the new

upper bound will be strictly smaller than the original upper bound.

6.3.3 The Adjacency Theorem

In this section, we prove results that will be used later in this chapter to motivate the

greedy heuristic method for constructing OODGs. The �rst theorem states that exchanging

neighboring features in an OODG only changes the nodes and incident edges at one level

of the graph. A local change in feature ordering corresponds to a local change in the shape

and size of the graph.
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Theorem 7 (Exchanging neighboring features)

Let G be an OODG implementing a function f , and assume, without loss of generality,

that the ordering of features is X1; : : : ; Xn (because we can rename the features). Let G(i),

1 � i � n � 1, be the unique OODG implementing f with the ordering of the features

as X1; : : : ; Xi�1; Xi+1; Xi; Xi+2; : : : ; Xn (i.e., the features Xi and Xi+1 are interchanged in

G(i)). Then the graph structure of G(i) may di�er from G only in the nodes at level i+ 1

and on the edges incident to the nodes at this level.

Proof: We construct a non-reduced OODG G0(i) from G by replacing the nodes at level

i+ 1 and all edges incident to the nodes at this level with new nodes and edges. We then

reduce G0(i) and because an OODG is unique for a given feature ordering (Section 6.3.1),

we know we have constructed G(i). The idea in the proof is that features Xi and Xi+1

implement a mapping from the nodes at level i to the nodes at level i + 2. The order in

which we test Xi and Xi+1 only determines the structure of the intermediate level, i + 1,

and the edges leaving and entering it.

Formally, for each node v at level i, we create jDom(Xi+1)j edges leaving it, each labelled
with a di�erent domain value, and each terminating at a new distinct node at level i+ 1.

Each node w at level i + 1 can be uniquely represented by a pair hvi; xi+1i, i.e., the node
reached at level i and the value of feature Xi+1.

From each node w = hvi; xi+1i at level i + 1, we construct jDom(Xi)j edges, such that

each edge labelled xi terminates at the unique node which is reached in graph G by tracing

the edges labelled xi and xi+1 from node v. This de�nes the non-reduced OODG G0(i). It

is easy to see that for each node v and level i and for any values xi and xi+1 for features

Xi and Xi+1 respectively, the path traced from node v reaches the same node at level i+2

in both graphs.

It remains to show that reducing G0(i) can only collapse nodes at level i+ 1. Nodes at

level i+2; i+3; : : : ; m could not be collapsed in G (because G is an OODG) so clearly they

cannot be collapsed in G0(i) as we have not changed those levels. To prove that nodes at

levels 0; 1; : : : ; i cannot be collapsed, it is su�cient to show that nodes at level i cannot be

collapsed. Assume the contrary, i.e., that two nodes at level i in G0(i) can be collapsed.

Then because the mapping from these nodes to the nodes at level i + 2 is the same as in

G, these nodes can be collapsed in G too without changing the function, thus contradicting

the uniqueness of graph G.
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Corollary 8

The width of an OODG at a given level is uniquely determined by the set of features tested

at that level and at lower levels.

Proof: Given an OODG built using some feature ordering, we can reorder the features

at level i and lower levels by exchanging neighboring features. We can achieve any order

by executing a bubble sort with comparisons done according to our desired order on the

features. According to Theorem 7, this process will only a�ect the width of levels i+ 1; i+

2; : : : ; n; hence the width of level i depends only on which features are used at level i and

lower levels and not on their ordering.

Given a function f , an optimal ordering of features for the levels of an OODG imple-

menting f is an ordering that creates the OODG with the smallest possible size. The next

theorem shows that in an optimal ordering, the width of a given level can never shrink if

we replace its feature by the feature prior to it (i.e., one level higher in the OODG) in an

optimal ordering and keep all subsequent features the same.

Theorem 9 (Adjacency Theorem)

De�ne WX(Xi+1; Xi+2; : : : ; Xn) to be the width of level i when feature X labels level i and

features Xi+1; Xi+2; : : : ; Xn label the levels i+1, i+2, . . . , n, respectively. If X1; : : : ; Xn is

an optimal ordering of the features for levels 1 to n of an OODG implementing a function

f , then WXi
(Xi+1; Xi+2; : : : ; Xn) � WXi�1(Xi+1; Xi+2; : : : ; Xn).

Proof: By Theorem 7, exchanging the features at level i� 1 and i changes only the num-

ber of nodes at level i (and incident edges). If WXi
(Xi+1; Xi+2; : : : ; Xn) were larger than

WXi�1(Xi+1; Xi+2; : : : ; Xn), the exchange would decrease the width of level i without chang-

ing the width of other levels, contradicting our assumption that X1; : : : ; Xn is an optimal

ordering.

This theorem does not say that a greedy strategy that always selects the feature yielding

the smallest width at every stage would generate an optimal ordering. The conditions of the

lemma might hold for many other orderings that are non-optimal, and for which multiple

exchanges might lead to a smaller OODG. The following example illustrates such a scenario.
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Figure 6.10: f = (X ^ Y ) _ (Y ^ Z) _ (X ^ Z). A non-optimal OODG obeying the
Adjacency Theorem on the left and an optimal one on the right.

Example 6.4 (Greedy is not optimal)

Assume four Boolean features W;X; Y; Z, and de�ne f to be

(X ^ Y ) _ (Y ^ Z) _ (X ^ Z)

The OODG on the left side in Figure 6.10 obeys the Adjacency Theorem and was derived

by picking the feature giving the smallest width each time. It is non-optimal, and by the

Adjacency Theorem, no single exchange will improve its size; however, making W the �rst

feature will yield a smaller OODG as shown on the right side of the �gure.

While the Adjacency Theorem does not guarantee an optimal ordering using a greedy

approach, it does allow us to prune the search of orderings as shown in the next two

corollaries. We assume that the search for an optimal ordering proceeds in a bottom-up

fashion, i.e., choosing the lowest feature in the OODG �rst and proceeding up.
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Corollary 10

At any level except the �rst, the feature that yields the greatest width should never be chosen.

Proof: The feature above it would necessarily violate the Adjacency Theorem.

Corollary 11

At any level i, the search for the feature immediately after X can be limited to features

Y , such that WY (Xi+1; Xi+2; : : : ; Xn) � WX(Xi+1; Xi+2; : : : ; Xn), i.e., features that form

a level wider than X at the level i.

Proof: Same as corollary 10.

Corollary 11 allows pruning of the search space of possible orderings. For example,

for n = 10 features, �nding the optimal ordering by trying all n! combinations requires

trying 3; 628; 800 of them, while the pruned search space requires searching only 50; 521

possibilities, which is less than 1=71 of the size of the original space. In Smith & Genesereth

(1985), a recurrence formula was given for a similar theorem in relation to conjunctive

queries, assuming that for each level i the widths for the di�erent features are di�erent.

Kohavi, at a talk in Mike Genesereth's group in 1993, conjectured that the number of

feature orderings forms an Euler sequence (the numbers correctly match the sequence for

n = 1 to 13). Assuming that the sequence is indeed an Euler sequence, one can show

that the asymptotic saving is a factor of 2 (2=�)(n+1) for n features. While the saving is

considerable for small n, the search space size is still dominated by n!.

The following corollary shows that a greedy selection of features that chooses the feature

minimizing the next level from the bottom up achieves a local optimum that cannot be

improved by any single exchange of neighboring features. Such exchanges, for example, were

done to improve the size of OBDDs when it was created top-down in Fujita, Matsunaga &

Kakuda (1991).

Corollary 12 (Local optimum)

If the feature that creates the smallest width at each level is chosen in a bottom-up con-

struction of an OODG, no exchange of two adjacent features will improve the size of the

OODG.
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Proof: By Theorem 7, swapping the features for levels i� 1 and i, changes only the width

of level i. Since each feature is selected to minimize the width, any neighbor must create a

larger level, increasing the overall size.

6.4 A Framework for Bottom-up Construction of OODGs

In this section, we present a recursive algorithm for constructing OODGs. To make the

exposition simple, we make the following simplifying assumptions that will be handled

separately:

1. We assume that the complete labelled instance space, X �Y , is given as the training

set. This assumption avoids the induction problem altogether. We simply have to

�nd an OODG that perfectly �ts the data.

2. We assume that the feature ordering is X1; X2; : : : ; Xn. Because we know that the

feature ordering is crucial for �nding a small OODG (Section 6.3.1), this assumption

delays a hard problem for later sections.

3. We assume that all input features are Boolean but do not restrict the label to

be Boolean. Continuous values are discretized in advance, and the extension from

Boolean inputs to discrete inputs is simple. This assumption is made merely to avoid

cumbersome notation in a few places. The fact that the label is non-Boolean is needed

because the algorithm is recursive and builds subproblems that have more than two

label values, even if the original problem has a Boolean label.

The input to the algorithm is a set of sets, fC0; C1; : : : ; Ck�1g, where each set Ci is the

set of all unlabelled instances in the space that should be mapped to class i. The output

of the algorithm is an OODG that correctly classi�es the training set.

The algorithm, shown in Figure 6.11, creates sets of instances, such that each set cor-

responds to one node in the graph (the input sets corresponding to the category nodes).

Intuitively, we would like an instance in a set Ci to reach node Vi (corresponding to the

set), when the instance's path is traced from the root of the completed OODG, branching

at branching nodes according to the feature values.

Given the input, the algorithm selects a feature X to test at the penultimate level of

the OODG. As assumed, we currently ignore the feature ordering problem and always
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Input: k mutually exclusive and exhaustive sets C0; : : : ; Ck�1 such that X =
Sk�1
i=0 Ci (the

whole instance space). Each set contains all the instances that should be mapped to the
given class.

Output: The OODG that correctly classi�es all instances in X with feature ordering
X1; X2; : : : ; Xn.

1. If (k = 1), then return a graph with one node.

2. Feature selection step: Let X be Xn, the last feature. (This step will be replaced in
variants of the algorithm.)

3. Project the instances in C0; : : : ; Ck�1 onto the instance space X 0, such that feature X
is deleted. Formally, if X is the ith feature,

X 0  �(X1;:::;Xi�1;Xi+1;:::;Xn)

k�1[
i=0

Ci (where �( ~X) means project on
~X) :

4. For all i; j 2 f0; : : : ; k � 1g, let C0
ij be the set containing instances from X 0 such that

the instances are in set Ci when augmented with X = 0, and in Cj when augmented
with X = 1. Formally,

C0
ij =

(
hX1; : : : ; Xi�1; Xi+1; : : : ; Xni

����� hX1; : : : ; Xi�1; 0; Xi+1; : : : ; Xni 2 Ci and
hX1; : : : ; Xi�1; 1; Xi+1; : : : ; Xni 2 Cj

)
:

5. Let k0 be the number of non-empty sets from
n
C0
ij

o
. Call the algorithm recursively

with the k0 non-empty sets in the space X 0, and let G be the OODG returned.

6. Label the k0 leaf nodes of G, corresponding to the non-empty sets C0
ij with feature

X . Create a new level with k nodes corresponding to the sets C0; : : : ; Ck�1. From
the node corresponding to each C0

ij , create two edges: one labelled 0, terminating at
the category node corresponding to Ci, and the other labelled 1, terminating at the
category node corresponding to Cj .

7. Return G.

Figure 6.11: The basic bottom-up algorithm for constructing an OODG.
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select the last feature in the given space (the space shrinks in each recursive call, thus

we e�ectively select Xn then Xn�1, Xn�2, etc.). The algorithm then creates new sets of

instances (corresponding to the nodes in the penultimate level of the �nal OODG), which

are projections of the original instances with feature X deleted. The sets are created so

that a set C0
xy (matching a branching node V 0

xy) contains all projections of instances that

are in Cx when augmented with X = 0, and in Cy when augmented with X = 1. In the

graph, the branching node corresponding to C0
xy will have the edge labelled 0 terminating

at node Vx, and the edge labelled 1 terminating at node Vy.

The new sets now form a smaller problem over n � 1 features, and the algorithm calls

itself recursively to compute the rest of the OODG with the nonempty sets of the new

level serving as the input. The recursion stops when the input to the algorithm is a single

set, possibly consisting of the null instance (0 features). Before proving correctness of the

algorithm, we show an example run.

Example 6.5 (Executing the Algorithm on Parity)

In this example, we show how to run the algorithm for the 3-bit odd parity function with

one irrelevant feature, i.e., f = X1 � X2 � X4 (X3 is irrelevant). Figure 6.12 parallels

the description below and depicts how the OODG is built.

The input to the algorithm is fC0; C1g. All instances in C0 have a label 0, and all

elements in C1 have label 1:

C0 = f0000; 0010; 0101; 0111; 1001; 1011; 1100; 1110g
C1 = f0001; 0011; 0100; 0110; 1000; 1010; 1101; 1111g :

Deleting feature X4 from each instance gives us the following projected instance space:

X 0 = f000; 001; 010; 011; 100; 101; 110; 111g :

Because we started with the full instance space, each of these projections has a de�ned

destination (a set name shown after the right-arrow below) for each possible value of X4.

Creating sets from all projected instances in X 0 that have the same destinations for the

same values of X4, we get the following sets:

C01(0! C0; 1! C1) = f000; 001; 110; 111g
C10(0! C1; 1! C0) = f010; 011; 100; 101g :
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0000
0010
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0111
1001
1011
1100
1110

0001
0011
0100
0110
1000
1010
1101
1111

000
001
110
111

010
011
100
101

11
00

10
01

nodes

Category

at level
Feature tested

-C0- -C1-

-C01- -C10- -C11-

-C0- -C1-

-C00- -C11-

-C0- -C1-

-C01- -C10-

0 1

{}
-C0-

-C0-

-C01-

-C1-

-C10-

X4

X3

X2

X1
0 1

0
1 1

0

0
1 1

0  0,10,1

0
1 1

0 0,10,1

-C00-

Figure 6.12: Example run of the bottom-up construction algorithm. The nodes correspond
to the formed sets. The set name is represented at the bottom of each node (e.g., C10

branches to node C1 at the next level on value zero and to node C0 on value one), and
the name used for the recursive call is at the top of each node. The target concept is
f = X1 � X2 � X4.



CHAPTER 6. OBLIVIOUS READ-ONCE DECISION GRAPHS 169

Note that out of four possible sets, only two were needed. We now construct the OODG

recursively using the two non-empty sets C01 and C10 as our input sets (the sets will be C0

and C1 in the recursive call). Selecting feature X3 to delete gives us the following projected

instance space:

X 00 = f00; 01; 10; 11g :

Creating the appropriate sets from the projected instances in X 00 yields the following sets:

C00(0! C01; 1! C01) = f00; 11g
C11(0! C10; 1! C10) = f01; 10g :

Note that each of the two new sets implements a constant function that ignores the value of

the given feature (i.e., it branches to the same node regardless of the feature value). A level

for which all nodes are constant nodes implies that the feature is irrelevant, and indeed, X3

is irrelevant for the target concept. Continuing the execution yields the OODG depicted in

Figure 6.13.

To extend the algorithm to discrete features, the projection step must create nodes that

have ` edges for a tested feature with ` discrete values. Instead of creating sets of the form

Cij , we would have sets of the form Ci1;i2;:::;i` . We now prove correctness of the algorithm for

general discrete features and any ordering of features, i.e., the selection step which currently

selects the last feature may be replaced with a function that selects any one of the features

in the projected instance space.

Theorem 13 (Correctness of the bottom-up algorithm)

The algorithm terminates and generates an OODG that correctly classi�es all instances in

the space X .

Proof: We prove termination, non-redundancy of nodes (reduced decision graph), and cor-

rectness.

Termination After at most n recursive calls, the algorithm must terminate because all

features will have been used, and the projected instance space will be the space of no

features, containing only the \empty" instance in set C0 (so k = 1).

Reduced OODG The sets Cij (or Ci1;i2;:::;i` in general) are by de�nition di�erent in their

destinations, so no two nodes can be collapsed.
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Figure 6.13: The OODG constructed for the function X1 � X2 � X4 (left), and the same
OODG after removal of constant nodes (right).
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Correctness We prove that the algorithm generates a structure to classify the inputs

correctly by induction on the number of levels. If there is only one level, there is just

one category, and all instances belong to it. If the �rst n�1 levels correctly categorize
the input into the categories required by the �rst recursive call, then by construction,

nodes will map the instances to the right category node.

6.5 Hardness Results and the HOODG Algorithm

I never came across one of Laplace's \thus it plainly appears"
without feeling sure that I have hours of hard work before me to �ll

up the chasm and �nd out and show how it plainly appears
|Nathaniel Bowditch, American Astronomer and Mathematician

who translated Laplace's Traite de Mecanique C�eleste

In this section, we show that constructing the smallest possible OODG from a partial

instance space in polynomial time is impossible if P6=NP. Even the single projection step of
the bottom-up construction algorithm (Step 3 in Figure 6.11) requires solving an NP-hard

problem when only a portion of the instance space is available. We then de�ne a greedy

heuristic for the projection step and a greedy heuristic for feature ordering. We conclude

the section with experimental results and open problems.

6.5.1 Incomplete Projections

If the full instance space is not given, there will be projections of instances for which some

values of the deleted feature will be missing (e.g., a projected instance must branch to

some node on value 0 but the destinations for value 1 is unknown). Such projections are

called Incomplete Projections, or IPs. Assigning values to the missing destinations of

IPs de�nes the generalizations made by the algorithm because it determines how unseen

instances will be classi�ed.

An IP is consistent with another projection, P, (at the same level of the graph), if

they do not have conicting destinations on the same value of the deleted feature. For

example, IP f0; 0g with destination C0 on value zero is consistent with projection f1; 1g
with destination C0 on value zero and C1 on value one; it is inconsistent with f1; 0g with
destination C1 on value zero. An IP is included in another projection, P, if they are

consistent, and if all destinations de�ned for the IP are also de�ned for the projection P.

(Note that included is an asymmetric relation.)



CHAPTER 6. OBLIVIOUS READ-ONCE DECISION GRAPHS 172

Following Occam's razor, we would like to �nd the smallest OODG consistent with the

data (we ignore pruning, or regularizing, at this stage). We are thus looking for a minimal

set of branching nodes that \covers" all projections, i.e., a minimal cover.

The following results show that it is unlikely that an algorithm �nding the smallest

consistent OODG will be found, even for a given ordering. In Takenaga & Yajima (1993)

and in Bollig & Wegener (1994), it was shown that identifying whether there exists an

OBDD with k nodes that is consistent with labelled instances is NP-complete, and this

result applies to OODGs too. The following theorem shows that minimizing even a single

level in an OBDD or OODG is NP-complete:

Theorem 14 (Minimal projection is NP-complete)

The following decision problem is NP-complete:

Given a set of labelled instances, an ordering on the n features, and two positive integers

w and `; is there an OODG that has width � w at level ` and that correctly classi�es all

instances?

The proof is given in Appendix C.

The reduction in the proof is done from graph k-colorability (chromatic number) using

only Boolean features. This is a strong negative result because it is known that the chromatic

number of a graph cannot be approximated to within any constant multiplicative factor

unless P=NP (Lund & Yannakakis 1993).

Finding the minimal representation using other common structures is also di�cult in the

worst case, yet heuristics seem to work well in practice. It is known that �nding an optimal

binary decision tree is NP-hard (Hya�l & Rivest 1976, Hancock 1989). For neural-networks,

the problem of loading a three-node neural network with a training set is NP-hard if the

nodes compute linear threshold functions (Judd 1988, Blum & Rivest 1992).

Given the hardness results, we use a simple greedy heuristic to assign the IPs. The

greedy strategy starts creating projection sets (branching nodes) from projections having

the greatest number of known destinations, and then proceeds to projections with fewer

known destinations. Following a least commitment strategy, each projection is placed in a

projection set it is included in (see de�nition above), whenever possible (hence not forcing

a new destination); otherwise, it is placed in a set where it is consistent with all instances,

if possible; otherwise, a new projection set is created, consisting of the single projection.
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Our heuristic breaks ties in favor of a projection set (a node containing instances) that has

the most instances di�ering by at most one feature value, and given equality, breaks ties in

favor of adding the minimum number of new destinations (again, least commitment).

6.5.2 Feature Ordering

There are n! possible orders in which to select the features in Step 2 of the algorithm

in Figure 6.11. Given the full instance space, it is possible to �nd the optimal ordering

using dynamic programming by checking \only" 2n orderings, as described in Friedman &

Suppowit (1987) and Friedman & Suppowit (1990).

Since searching n! combinations is impractical in practice, our greedy approach selects

the feature that yields the smallest width at the next level, excluding constant nodes. Based

on Corollary 12, we know that the greedy strategy achieves a local optimum in the space of

possible orderings if the whole feature space was given. The approach seems to work well

in practice, unless there are ties. We break ties in favor of minimizing the number of edges.

If all nodes are constant nodes (the feature is deemed irrelevant), we do another lookahead

step and pick the feature that maximizes the number of irrelevant features at the next level.

After a feature with k values, the size of the space is shrunk by a factor of k. The size of

the training set for the recursive call, however, is likely to shrink by less than a factor of k,

unless for every projected instance there are exactly k instances in the training set, each one

with a di�erent value for the deleted feature. The greedy approach tends to prefer irrelevant

features early because they never increase the width of the OODG. If irrelevant features

are indeed chosen early, the ratio of the number of projected instances to the projected

instance space increases, so less generalization is required.

6.5.3 The HOODG Algorithm

The HOODG algorithm implements the two greedy, or hill-climbing, strategies described

above. The worst-case time complexity of the HOODG algorithm is O(ns2 + is2(n � 1))

per level, where i is the number of features at the given level that require another step of

lookahead, and s is the number of projected instances at that level. This assumes that the

number of values per feature is a bounded constant. If we ignore the two-level lookahead,

the time complexity of the overall algorithm is O(n2m2), where m is the number of instances

in the training set. The result follows from the fact that the number of levels is bounded

by n, and the number of projections at each level is bounded by m.
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Table 6.1: Comparison of C4.5, DGRAPH, and HOODG. Results are averages of ten runs
with standard deviation after the � sign. Number in parentheses denote the training set
size and test set size; XV means ten-fold cross-validation. \local" means local encoding,
\binary" means binary encoding. The best accuracy for each dataset is shown with a star
(F), and accuracies within one half standard deviation of the best, are marked with a
check-mark (X). Such small di�erences in accuracy indicate comparable performance.

Data Set C4.5 DGRAPH HOODG

Monk1 (60/432) 83:56%� 9:27% 73:89%� 2:68% XF 100:00%� 0:00%

Monk2 (169/432) 72:73%� 5:66% 66:67%� 1:46% XF 91:30%� 1:98%

Monk2-local 75:75%� 7:83% 67:13%� 0:00% XF 99:14%� 0:62%

parity5+5 (100/1024) 51:56%� 2:32% 50:00%� 0:00% XF 100:00%� 0:00%

vote (435/XV) X 95:43%� 4:31% XF 95:63%� 3:69% X 94:03%� 3:46%

breast cancer (699/XV) XF 94:64%� 6:16% X 93:85%� 4:26% 86:99%� 6:50%

breast cancer binary XF 96:07%� 6:16% 92:84%� 5:94% X 95:03%� 2:77%

Table 6.1 shows a comparison of the HOODG algorithm with C4.5 and DGRAPH.

DGRAPH (Oliver 1993) is an algorithm for building general decision graphs (with no re-

strictions), using an MDL criterion for splitting and merging nodes. The comparison was

originally shown in Kohavi (1994b) and is very limited because the HOODG algorithm is

neither able to deal with noise nor is the feature ordering very good as we will shortly

discuss. The two datasets not previously described in this dissertation are vote and par-

ity5+5. The vote database includes votes for each of the U.S. House of Representatives

Congressmen on 16 key votes; the task is to classify each congressman as either a Democrat

or a Republican. Parity5+5 is a dataset with ten features, and the target concept is the

parity of �ve of them (the rest are irrelevant).

In the comparison shown, C4.5 was run with the best setting of its m parameter to

either one or two and the g parameter to either on or o�. DGRAPH was executed with two

levels of lookahead and with di�erent p values (the one that yields the minimum message

length is reported, as suggested by Oliver).

While HOODG was successful on the arti�cial concepts, it was not very good at handling

real-world domains, and su�ered when there were many weakly relevant and irrelevant

features. We now list the main limitations of the algorithm:

Feature ordering The greedy approach works well if there are not many ties for the
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heuristic that attempts to minimize the width of the penultimate level. However,

if there are many features, many of them will lead to ties because the set of n � 1

features that are left after one feature is deleted uniquely determines the class in

the training set (this is usually the case if there are enough features). If the class is

uniquely determined, the width of the penultimate level is the same as the number

of classes, and the nodes implement constant functions ignoring the feature value.

The heuristic measure for feature selection is thus unable to determine which of the

features it should project on. The extra lookahead rarely helps if there are many

features because the next level will usually have similar ties.

Pruning HOODG does no pruning and, therefore, perfectly �ts the data. It is well known

that pruning, or regularizing, introduces bias and reduces variance, so that the error

may decrease for real problems.

Real-valued features The algorithm is de�ned only for discrete features. This restriction

is not severe, as the data can be discretized.

6.6 HOODG with Wrappers

Given the many limitations of the original HOODG algorithm, we now investigate three

approaches to feature ordering and feature subset selection. The �rst method uses the

wrapper approach; the second one uses an entropy criterion; and the third one combines

both. Selecting a feature subset and an ordering indirectly provides a pruning mechanism

because the instances projected on a small set of features might contain conicts (see re-

lated discussion in Section 4.4.1 where feature subset selection provided an indirect pruning

mechanism for ID3).

The algorithms that will be discussed below discretize continuous features and two of

them contain wrappers around the basic HOODG algorithm. The wrapper searches the

space of feature orderings (not all features need to be used) and then runs HOODG on the

given ordering where only the covering heuristic for incomplete projections (IPs) is used.

The following three operators are used to search the states that represent feature lists,

Add feature A feature is added to the end of the feature list. This operator is applied for

every feature not currently in the feature list.
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Table 6.2: Summary of datasets with unknown instances removed. The number in paren-
theses indicate the number of instances including unknowns. CV indicates ten-fold cross-
validation.

no. Dataset Features no. Train Test
all nominal cont classes size size

1 breast cancer 10 0 10 2 683 (699) CV
2 cleve 13 7 6 2 296 (303) CV
3 crx 15 9 6 2 653 (690) CV
4 DNA 180 180 0 3 2000 (2000) 1186 (1186)
5 horse-colic 22 15 7 2 7 (368) CV
6 Pima 8 0 8 2 768 (768) CV
7 sick-euthyroid 25 18 7 2 1351 (2108) 649 (1055)
8 soybean-large 35 35 0 15 562 (683) CV

9 corral 6 6 0 2 32 (32) 128 (128)
10 m-of-n-3-7-10 10 10 0 2 300 (300) 1024 (1024)
11 Monk1 6 6 0 2 124 (124) 432 (432)
12 Monk2-local 17 17 0 2 169 (169) 432 (432)
13 Monk2 6 6 0 2 169 (169) 432 (432)
14 Monk3 6 6 0 2 122 (122) 432 (432)

Delete feature A feature is deleted from the feature list. This operator is applied for

every feature that is currently in the feature list.

Exchange feature A consecutive pair of features in the list is exchanged. This operator

is applied for all pairs of two consecutive features in the list (there are `� 1 for a list

of size `).

Although the add feature alone can reach any node in the space theoretically, the other

two operators are useful in practice because we rarely do an exhaustive search. Speci�cally,

the \exchange feature" operator allows the ordering to change without changing the feature

subset: any ordering of a feature subset can be achieved by exchanging neighboring features

(bubble sort).

We describe experiments on the standard set of datasets used in this dissertation. The

implemented HOODG algorithm and variants do not support unknown values, so all in-

stances with unknown values were removed from the datasets. The mechanism for handling
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Table 6.3: A comparison of C4.5 and HOODG-Frwd. The p-val column indicates the
probability that HOODG-Frwd is better. All instances with unknown values were removed.

Dataset C4.5 HOODG- p-val
Frwd

1 breast cancer 95.32� 0.9 95.75� 0.7 0.70
2 cleve 74.98� 2.5 81.77� 2.7 1.00
3 crx 84.08� 1.1 85.15� 1.0 0.85
4 DNA 92.66� 0.8 93.93� 0.7 0.96
5 horse-colic 100.00� 0.0 100.00� 0.0 0.50
6 Pima 71.60� 1.9 74.34� 1.7 0.93
7 sick-euthyroid 97.84� 0.6 97.07� 0.7 0.11
8 soybean-large 92.54� 1.4 91.46� 1.3 0.22

9 corral 81.25� 3.5 81.25� 3.5 0.50
10 m-of-n-3-7-10 85.55� 1.1 77.34� 1.3 0.00
11 Monk1 75.69� 2.1 100.00� 0.0 1.00
12 Monk2-local 70.37� 2.2 64.35� 2.3 0.00
13 Monk2 65.05� 2.3 64.35� 2.3 0.38
14 Monk3 97.22� 0.8 97.22� 0.8 0.50

Average real: 88.63 89.93
Average artif. 79.19 80.75

unknown values in OODGs can be done in a similar fashion to the way C4.5 handles un-

known values. Table 6.2 shows a summary of the datasets after unknown values have been

removed. The horse-colic dataset becomes rather useless, as there are only seven instances

left, and they are all of the same class. For the sick-euthyroid dataset, the TBG feature was

removed prior to �ltering instances with unknown values because it contained an unknown

value for almost all the instances. In all runs comparing algorithms, the exact same datasets

and folds were used (all had unknown values removed).

6.6.1 HOODG-Frwd

The HOODG-Frwd algorithm runs a wrapper starting from the empty list of features.

Table 6.3 and Figure 6.14 show a comparison of C4.5 and HOODG-Frwd. The following

observations can be made:

1. For the real domains, the results indicate that HOODG-Frwd is signi�cantly better

for cleve, DNA, and Pima (at the 90% con�dence level), and slightly better on breast
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Figure 6.14: HOODG-Frwd minus C4.5: Absolute di�erence in accuracy (left) and in std-
devs (right). The std-devs graph truncated at 5 standard deviations.

cancer and crx. C4.5 is better on sick-euthyroid and soybean-large, but these are not

signi�cant at the 90% level. The relative reduction in error is 11.4%.

2. For the arti�cial domains, HOODG-Frwd is signi�cantly better only for Monk1. It is

signi�cantly worse for m-of-n-3-7-10 and Monk2-local, which is disappointing, given

that these are two symmetric concepts. The best-�rst search is not searching the

space well enough to �nd the correct set of features.

The problem of identifying the correct set of features in the arti�cial problems can

be mitigated either by increasing the stale parameter for the wrapper (i.e., the stopping

criterion) or by starting the search at a better initial state in the state space. The next

section attempts to �nd a good initial state.

6.6.2 Using Conditional Entropy

One possibility for improving HOODG-Frwd, both in terms of the running times and in

terms of �nding a good set of features, is to start the search for the feature subset and

ordering with a better initial node. A good initial node is algorithm speci�c, but it is not

hard to design a reasonable choice for OODGs. The idea is similar to that of decision trees,

namely to minimize the conditional entropy of the label given the tested features. The

advantage of OODGs is that any feature subset uniquely de�nes the conditional entropy

(whereas with trees, one has to de�ne all the paths to the leaves).

A greedy algorithm beginning with an empty list of features, �nds the best single feature
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Table 6.4: A comparison of C4.5, HOODG-Entropy, and HOODG-Middle. Each of the
p-val columns indicates the probability that the algorithm in the previous column is better
than C4.5.

Dataset C4.5 HOODG- p-val HOODG- p-val
Entropy Middle

1 breast cancer 95.32� 0.9 95.31� 0.7 0.50 95.32� 0.6 0.50
2 cleve 74.98� 2.5 81.08� 2.5 0.99 82.80� 2.0 1.00
3 crx 84.08� 1.1 86.23� 0.8 0.99 85.31� 1.0 0.88
4 DNA 92.66� 0.8 94.18� 0.7 0.98 94.10� 0.7 0.98
5 horse-colic 100.00� 0.0 100.00� 0.0 0.50 100.00� 0.0 0.50
6 Pima 71.60� 1.9 73.56� 1.4 0.88 74.47� 1.8 0.94
7 sick-euthyroid 97.84� 0.6 96.92� 0.7 0.07 97.07� 0.7 0.11
8 soybean-large 92.54� 1.4 83.63� 2.0 0.00 91.47� 1.1 0.20

9 corral 81.25� 3.5 75.00� 3.8 0.04 81.25� 3.5 0.50
10 m-of-n-3-7-10 85.55� 1.1 100.00� 0.0 1.00 100.00� 0.0 1.00
11 Monk1 75.69� 2.1 100.00� 0.0 1.00 100.00� 0.0 1.00
12 Monk2-local 70.37� 2.2 100.00� 0.0 1.00 100.00� 0.0 1.00
13 Monk2 65.05� 2.3 63.43� 2.3 0.24 64.35� 2.3 0.38
14 Monk3 97.22� 0.8 97.22� 0.8 0.50 97.22� 0.8 0.50

Average real: 88.63 88.86 90.07
Average artif. 79.19 89.27 90.47

that minimizes the conditional entropy (of the label given the list of features), appends it to

the list of features, and reiterates. As with decision trees, we �nd a longer list than necessary

and then prune the trailing features using cross-validation on the oblivious decision-tree

formed. If the list is of size n, then we conduct n cross-validation runs and choose the best

one. Kohavi & Li (1995) used this idea to build an oblivious decision tree and to convert it

to a graph.

The HOODG-Entropy algorithm determines the feature ordering based on the above

heuristic. It does not use the wrapper approach. The HOODG-Middle algorithm starts the

search at the node found using the entropy heuristic (the wrapper search progresses neither

forward nor backward because it starts in the middle of the search space).

Table 6.4 and Figure 6.15 show a comparison of C4.5, the HOODG-Entropy algorithm,

and the HOODG-Middle algorithm. The following observations can be made:

1. HOODG-Entropy signi�cantly outperforms C4.5 on three real-world datasets (cleve,
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crx, and DNA) and is signi�cantly inferior on two (sick-euthyroid and soybean-large).

On the arti�cial datasets, it is signi�cantly better on m-of-n-3-7-10, Monk1, and

Monk2-local where the optimal graphs are found, while inferior only on corral.

Thus on most datasets, the entropy heuristic seems very good.

2. HOODG-Middle, which uses the wrapper approach to search from the initial node

found by HOODG-Entropy, is slightly outperforming HOODG-Entropy. The main

improvement is for the soybean-large dataset, where the accuracy went up from 83.63%

to 91.47%.

3. For the real datasets, the performance of the HOODG-Middle algorithm is similar to

that of the HOODG-Frwd. It is slightly higher for some datasets and slightly lower for

others, but the overall average accuracy is slightly higher than that of HOODG-Frwd.

The relative reduction in error between HOODG-Middle and C4.5 for the arti�cial

datasets was 10.9%.

4. For the arti�cial datasets, HOODG-Middle improves over HOODG-Entropy and gen-

erates a classi�er that has the same accuracy as C4.5. The relative reduction in error

between HOODG-Middle and C4.5 for the arti�cial datasets was 54.2%.

The running times for a train-test sequence of HOODG-Middle are very high6: 50 hours

for DNA, 15 hours for soybean-large, 1.7 hours for cleve, 1.5 hours for Pima, 19 minutes for

crx, 15 minutes for sick-euthyroid, 13 minutes for corral, mofn, and Monk2-local, and less

than �ve minutes for breast-cancer, horse-colic, Monk1, Monk2, and Monk3. Decreasing the

stale parameter from �ve to two will speed all runs signi�cantly, with little loss of accuracy.

The running times for HOODG-Entropy are much faster: 47 minutes for DNA, and

under three minutes for all the other datasets. One can use HOODG-Middle as an anytime

algorithm (Boddy & Dean 1989) and let it run as long as time permits. The initial guess is

quite good, but may improve as in the soybean-large dataset.

6Speed is always relative. A recent posting by Radford Neal announced software for neural network
Bayesian learning, where he writes that \For problems and networks of moderate size (e.g., 200 training
cases, 10 inputs, 20 hidden units), full training (to the point where one can be reasonably sure that the
correct Bayesian answer has been found) typically takes several hours to a day on our SGI machine.. . . (Of
course, your machine may not be as fast as ours!)" If the scaling up of neural networks were linear in the
size of the dataset and the number of features (it is far from that), the DNA dataset, which has 18 times
more features and ten times the number of instances, would take more than 180 days.
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Figure 6.15: HOODG-Middle minus C4.5: Absolute di�erence in accuracy (left) and in
std-devs (right). The std-devs graph is truncated at ten standard deviations.

Table 6.5: The number of features in the dataset, the number used by C4.5, and the number
selected by HOODG-Middle.

Dataset Original C4.5 HOODG-
dataset Middle

1 breast cancer 10 6.2 3.6
2 cleve 13 8.7 3.1
3 crx 15 9.0 3.2
4 DNA 180 46 11
5 horse-colic 22 0.0 0.0
6 Pima 8 8.0 4.0
7 sick-euthyroid 25 6 3
8 soybean-large 35 16.9 9.7

9 corral 6 4 2
10 m-of-n-3-7-10 10 9 8
11 Monk1 6 5 3
12 Monk2-local 17 12 7
13 Monk2 6 6 3
14 Monk3 6 2 2
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Table 6.5 shows the average number of features in the dataset, the number used by C4.5

and in the number used by HOODG-Middle. One can see that HOODG-Middle uses equal

or fewer features in all the datasets. A comparison with C4.5-FSS (Table 4.12 on page 114)

shows that HOODG-Middle uses equal or fewer features in almost all datasets, with the

exception of m-of-n-3-7-10, Monk2-local, and Monk2. (The comparison is not completely

fair because instances with unknown values were removed from the datasets in this chapter,

which a�ects all the real datasets except DNA and Pima.) The larger feature subset in

m-of-n-3-7-10 and Monk2-local is justi�ed because HOODG-Middle has higher accuracy

and �nds an optimal feature subset.

The comprehensibility of a classi�er's structure (e.g., a decision tree or graph) is a

subjective judgment. Appendix D shows the trees and the OODGs generated by C4.5 and

HOODG-Middle. To avoid showing ten trees for the cross-validation runs, we used a 1/3

holdout (the training set was two-thirds of the dataset, the test set was one third of the

dataset) to generate the trees and graphs.

Not all graphs are more comprehensible than trees, even when the accuracy is com-

parable or higher. For example, the OODG for DNA seems very complicated. Some of

the di�erences are due to the discretization more than to di�erences in the algorithm. For

example, the discretization algorithm discretized the \FTI" feature in the sick-euthyroid

dataset into one interval (essentially removing it), yet C4.5 used it heavily. If we run C4.5

on the discretized dataset, then the ten-fold accuracy degrades to 96.76%, which is lower

than the accuracy of the both variants of the basic HOODG algorithm; of course, in some

cases, the discretization might help C4.5.

6.7 Related Work

We are like dwarfs on the shoulders of giants, so that we can see more than
they, and things at a greater distance, not by virtue of any sharpness of sight
on our part, or any physical distinction, but because we are carried high and

raised up by their giant size.
|Bernard of Chartres, John of Salisbury Metalogicon, 1159, Book 3

Decision graphs have been rediscovered many times, and their properties were studied

under di�erent frameworks. In this section, we give references to the most important papers

and survey papers. Very little work, however, has dealt with learning decision graphs;

therefore, we will cover the relevant papers in more detail.
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6.7.1 Variants of Decision Graphs

Lee (1959) introduced binary decision programs that are evaluated by executing a series of

instructions that test a variable (feature) and make a two way branch. He showed that it

is possible to represent any switching function in O(2n=n) such instructions.

Akers (1978) described binary decision diagrams and gave a top-down procedure for

building them using the Boole-Shannon expansion (Boole 1854, Shannon 1949):

f = xi � f jxi=1 + xi � f jxi=0

where f jxi=b is the restriction, or cofactor, of the function f

f jxi=b(x1; : : : ; xn) = f(x1; : : : ; xi�1; b; xi+1; : : : ; xn)

Moret (1982) gives an excellent survey of work on decision trees and diagrams with over

100 references.

Bryant (1986) introduced Ordered Binary Decision Diagrams (OBDDs), which spawned

a plethora of articles and a whole subcommunity dealing with OBDDs; Bryant (1992)

surveys the topic. OBDDs are a restriction of Binary Decision Diagrams (BDDs), where

a total ordering is de�ned over the set of features and all paths must test features in

accordance with the given ordering. Note that OBDDs are not necessarily levelled. Bryant

describes the advantages of OBDDs over the common representations like CNF and DNF

(these advantages apply to OODGs too):

� Operations like complementation may yield exponential growth for DNF and CNF,

while they do not change the size of OBDDs.

� Common operations, such as reduction, f1 < op > f2 (where op is any binary func-

tion), restriction, and composition are bounded by the product of the graph sizes for

the functions being operated on.

� Satis�ability testing takes constant time (check if the OBDD has a single category

node 0), while �nding a satisfying assignment for n features takes O(n). Counting

the number of satisfying assignments if O(jGj) where jGj is the size of the graph,

and �nding all satisfying assignments is O(n � jSf j) where jSf j is the number of such
satisfying assignments.
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OBDDs have been used for automatically verifying �nite state machines, including 64-

bit ALUs, with up to 10120 states by representing the state space symbolically instead of

explicitly (Burch, Clarke, McMillan, Dill & Hwang 1990, Burch, Clarke & Long 1991).

These applications show, at least empirically, that many functions occurring in engineering

domains seem to be representable in small (polynomial) OBDD structures (and hence in

OODGs).

Chakravarty (1993) characterizes BDDs in terms of the complexity of computational

problems. He showed that free BDDs, which are read-once decision graphs and hence a

superset of OBDDs, can also be used to solve the common problems in the BDD community

(e.g., test generation, simulation, and compact testing) in polynomial time. He also showed

that the cover problem, i.e., determining whether one function implies the other, is NP-hard

even for simple BDDs, in which every input feature labels at most one node (equivalent to

�-branching programs described below).

In the computer science theory community, binary decision graphs have been called

branching programs, and studied extensively in the hope of separating some complexity

classes and for studying the amount of space needed to compute various functions (Boppana,

& Sipser 1990). Two important theorems tell us that an algorithm in SPACE(S(n)) for

S(n) � logn has a branching program complexity of at most cS(n) for some constant c

(Masek 1976), and that constant-width branching programs are very powerful, being able

to accept all NC1 languages (Barrington 1989).

Krause & Waack (1991) studied decision graphs of linear depth and gave exponential

lower bounds on several graph accessibility problems. Meinel, Krause & Waack (1988)

showed the equivalence of read-once decision graphs with a logn-space bounded eraser

Turing machine, which has a special read-once-only input tape. By means of an indexing

tape, the machine decides in the course of the computation in what order to read the

input. After one input cell has been read, it is erased, and the machine will never ask for

it again. The relations between the di�erent models, that is, OBDD, Branching Programs,

and Decision Trees, are summarized in Meinel (1992).

An interesting point, �rst mentioned by Lee (1959) and later by Akers (1978) is that

a decision diagram actually represents more than one function. Entering the diagram at a

di�erent node allows sharing functions. This idea was studied by Minato, Ishiura & Yajima

(1990) and might be relevant to multi-task learning problems (Caruana 1993), where the

goal is to learn several hard tasks at one time. Because subgraphs may be shared, learning
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may proceed faster, an idea that was exploited for Explanation-Based Learning by Mitchell

& Thrun (1993) and more recently, through the learning of invariants, by Thrun & Mitchell

(1995).

6.7.2 Learning Decision Graphs

Oliveira & Sangiovanni-Vincentelli (1995) described an algorithm for learning OODGs, un-

der the name Reduced Ordered Decision Graphs. The algorithm starts from a decision

tree and converts it to an OODG using the minimum description length principle (Rissanen

1986, Rissanen 1978). Their algorithm performed extremely well on many arti�cial domains

but rather poorly on the real-domains from UC Irvine repository (Murphy & Aha 1995).

General decision graphs were investigated by Oliver, Dowe & Wallace (1992) and Oliver

(1993). The algorithms construct decision graphs top-down, by doing a hill-climbing search

through the space of graphs, estimating the usefulness of each graph by Wallace's MMLP

(minimum message length principle). At each stage a decision is made whether to split a

leaf (and which), or whether to join two leaves. Operations that increase the message-length

are never performed, hence the algorithm is guaranteed to terminate.

Dvorak (1992) independently discovered the original bottom-up technique we have used

here to minimize OBDDs. His motivation was to minimize Boolean functions with \Don't

Cares," as opposed to induce a structure with high predictive power. Because he is only

interested in \compressing" a function, he does not have to deal with issues of pruning.

He suggested a lookahead scheme to minimize the width of the OBDD a few levels up, but

concluded the paper by saying that the method can be applied to Boolean functions up

to 20 features.

Bahl, Brown, de Souza & Mercer (1989) suggested a pylon structure, shown in Fig-

ure 6.16. Pylons are very restricted decision graphs: the graphs are of width two, and tests

alternate between the right and left columns. Pylons were suggested as the structure to use

in composite nodes within a decision tree, and claimed that they can \express certain types

of semantic questions as well as grammatical questions."

Chou (1991, 1988) suggested a variant of the standard recursive partitioning algorithm

that is suitable for constructing directed acyclic decision graphs called decision trellises.

The idea is that after two levels of a decision tree have been constructed and there are, say,

four leaves, the partitioning algorithm tries to partition the instances directly into the four

leaves, thus creating a composite node.
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Figure 6.16: A Pylon. Question marks denote tests at the branching nodes.

Michalski & Imam (1994) and Imam (1995) suggested the use of decision structures,

which are decision trees with complex tests at nodes, disjunctive values on the edges, and

probabilistic classi�cations at the leaves. Polynomially-size decision structures are more

powerful than univariate trees because of the wider range of tests allowed (e.g., test equality

of two features) but are incomparable to OODGs because they are still trees. The decision

structures are constructed from rules (as opposed to construction from instances in the

standard supervised machine learning setting), which are in turn derived by the AQ15

system (Michalski, Mozetic, Hong & Lavrac 1986) or one of its variants. The AQDT-2

algorithm selects tests for nodes based on �ve criteria that measure properties of the decision

rules: measuring cost, disjointness of classes, rule importance score, value distribution, and

dominance of features.

Results for learning branching programs under Valiant's PAC learning model (Valiant

1984, Angluin 1992) are either negative or still open. Raghavan & Wilkins (1993) showed

that even if we restrict ourselves to �-branching programs, where each feature can appear

only once in the whole graph, exact PAC learning is impossible either with membership

queries alone (membership queries allow the learner to ask whether an instance is in the

target class or not) or with equivalence queries alone (equivalence queries allow the learner
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to ask for a counter example to a given hypothesis). Learning is possible if both types of

queries are allowed, but the complexity of their algorithm is O(n5).

Erg�un, Kumar & Rubinfeld (1995) showed how to PAC learn width-two branching

programs, and then showed that the existence of an e�cient algorithm for learning width-

three branching programs would imply the existence of an e�cient algorithm for learning

DNF, which is still an open problem.

Gavald�a & Guijarro (1995) showed that learning OBDDs is possible in the PAC model

if the feature ordering is given and both equivalence and membership queries are allowed.

Neither type of query su�ces unless P=NP.

6.8 Future Work

Don't be afraid to leave part of the problem for future work.
|desJardins (1994)

The wrapper approach was used to improve the initial ordering selected by the entropy

criterion. There is de�nitely an improvement for some datasets, but one would hope that a

better criterion could be found that would be faster than the wrapper.

We project one level at a time, but multi-level projections may be more useful. Specif-

ically, it may be possible to try to project to a level that is highly constrained or that is

narrow and then break the problem up into two. The added constraints on the possible

placement of incomplete projections might help.

The wrapper swaps the ordering of features and rebuilds the OODG. It may be possible

to modify the algorithm to swap features of an OODG that has been built. Minato (1992)

and Ishiura, Sawada & Yajima (1991) in the OBDD community showed improvements by

swapping features, but because they deal with completely speci�ed functions, swapping is

easier.

The discretization we have performed discretizes each feature independently of others.

This seems to be working reasonably well, except for the sick-euthyroid dataset. Because

we decide on an ordering before building the OODG, it is possible to discretize each feature

conditioned on all the previous features, as is done with decision trees. This discretization

would be less variable in its discretization than in decision trees because the discretization

is done per level and uses all the instances (whereas with decision trees only the instances

at a given node are used to discretize the feature tested at the node).
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The bias of OODGs may be inappropriate for decomposable problems, where after

testing a few features, the features at each subtree are disjoint. A combined approach, which

does recursive partitioning and then changes to an OODG, may be a good compromise. At

the higher nodes, there are enough instances in the nodes; after a few splits, we can change

to an OODG structure to avoid further fragmentation.

The decision tables described in Chapter 5 on page 130 can be converted into oblivious

decision trees to create comprehensible structures when many features are used. If we

decide on an ordering on the features, as we have done with OODGs, it is possible to

avoid the silly prediction of the training set's majority class when a perfect match is not

found in the decision table; instead, we can predict the majority class of the parent node.

This modi�cation still allows using incremental cross-validation, something important that

we have lost in the transition to OODGs. A nice Bayesian interpretation to the use of

the parent's majority is that it is equivalent to marginalizing over the last feature in the

feature list. This is something that is commonly done for the N-gram model used in speech

recognition: the 2-gram model is used to smooth the 3-gram model for combinations that

did not appear in the training set (Jelinek 1985). Similar smoothing was done by Buntine

(1992) for regular (non-oblivious) decision trees.

6.9 Summary

We have described some properties of oblivious read-once decision graphs (OODGs). Given

an ordering on the features, every function has a unique OODG implementing it, which

makes the hypothesis space structured and non-redundant. The Kite Theorem shows an

envelope bounding the sizes of possible OODGs, and its asymmetric shape was the motiva-

tion for the bottom-up construction algorithm.

We described a general bottom-up framework for constructing OODGs, and investigated

ways to handle the two main problems: placing (or coloring) incomplete projections and

�nding a good ordering on the features. The former problem was handled by a greedy

algorithm; three solutions were proposed for the latter problem: choosing the feature to

minimize the width of the next level, �nding an order based on minimizing mutual infor-

mation, and using the wrapper approach to minimize estimated accuracy. The last two

approaches seem to work best, with the wrapper approach performing the best but also the

slowest by far.
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The HOODG family of algorithms successfully avoids the replication and fragmentation

problems, which are two of the main problems with decision trees and the recursive parti-

tioning algorithms that construct them. On the symmetric concepts, such as Monk2-local

andm-of-n-3-7-10, the induced OODGs were optimal. On real-world concepts, performance

was better than C4.5 on average, but|as expected|there are cases for which OODGs and

the learning algorithms are inappropriate, and C4.5's performance is better. In at least

one case, the sick-euthyroid dataset, we have identi�ed that the problem is with the dis-

cretization algorithm, which removes an important feature by discretizing it into a single

interval.

The graphs produced by the HOODG algorithms used less features than C4.5, and were

usually smaller, and therefore easier to comprehend but not always. In some cases, as in

the DNA dataset, the graph structure seemed more complex, although the accuracy was

also higher. We believe that a mixed approach of using decision trees at high levels and

switching to OODGs at lower levels, or using OODGs as complex nodes in a tree, may be

a promising direction for future work.



Chapter 7

Conclusions

\Where shall I begin, please your Majesty?" he asked.
\Begin at the beginning," the King said, very gravely,

\and go on till you come to the end; then stop."
|Lewis Carroll (Charles Lutwidge Dodgson),

Alice's Adventures in Wonderland

In this dissertation, we dealt with some basic topics in machine learning: accuracy es-

timation, feature subset selection, and parameter tuning. We also introduced two new

hypothesis spaces: decision tables with majority and oblivious decision graphs. In Sec-

tion 7.1, we briey summarize the conclusions from this dissertation. In Section 7.2, we

make some general remarks about the induction algorithms described in this dissertation

and their relation to other algorithms in the �eld of supervised classi�cation learning. We

conclude with general comments about the �eld in Section 7.3.

7.1 Summary of Results

New ideas sometimes su�er from misinterpretation of original purpose and
overextension of domain of application by impulsive zealots

|Geisser (1975)

In Chapter 3, we reviewed common accuracy estimation methods: holdout, cross-validation,

and the .632 bootstrap. We showed examples where each one fails to produce a good es-

timate and conducted a large-scale experiment comparing cross-validation and the .632

bootstrap on a variety of real-world datasets with di�ering characteristics. The .632 boot-

strap was found to have very large bias in some cases, making it inappropriate for our

needs; with cross-validation, one could tradeo� bias for variance by changing the number

190
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of folds. While cross-validation has no clear probabilistic interpretation, we showed that it

is justi�ed if the induction algorithm is stable for a given dataset. k-fold cross-validation

with moderate k values (10-20) reduces the variance while increasing the bias. As k de-

creases (2-5) and the sample sizes get smaller, there is an increase in the variance due to

the instability of the training sets themselves. Repeated cross-validation runs stabilize the

estimates for small values of k. In this dissertation, we used a dynamic approach that

repeats cross-validation runs based on the estimated variance: if the variance is high, the

algorithm executes another run of cross-validation. This approach seems to work well in

practice.

In Chapter 4, we de�ned the wrapper approach, contrasted it with �lter approaches,

and showed its advantages and disadvantages. We studied the wrapper approach under two

settings: feature subset selection and parameter tuning. For feature subset selection, we

investigated the relevance and irrelevance of features and concluded that weak and strong

relevance are needed to capture our intuition better than just relevance. We then showed

that these de�nitions are mainly useful with respect to an optimal rule, i.e., Bayes rule, and

that in practice one should look for optimal features with respect to the speci�c learning al-

gorithm at hand. Relevance did help motivate compound operators, which are currently the

only known practical way to conduct backward searches for feature subsets. For parameter

tuning, we have shown that the accuracy of C4.5 can be improved in practice by automat-

ically setting its parameters to achieve high estimated accuracy. The wrapper approach

requires a search space, operators, a search engine, and an evaluation function. We inves-

tigated all of them in detail. We also showed some problems with the wrapper approach,

namely over�tting and the large amounts of CPU times required, and we de�ned the search

problem as an abstract state space search with probabilistic estimates, a formulation that

may capture other general problems and that might be studied independently to solve the

existing problems.

In Chapter 5, we used a simple hypothesis space, the space of decision tables with

a default majority rule (DTMs), to test the conjecture that feature subset selection is a

very powerful bias (in the machine learning sense of bias). The accuracy of IDTM was

surprisingly high, and we concluded that this bias is extremely important for many real-

world datasets. We showed that the resulting decision tables are very small and use few

features, which can be displayed using General Logic Diagrams (Appendix B on page 203).
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It is also possible to convert decision tables into oblivious decision trees or graphs to display

them di�erently and increase their comprehensibility. The ability to incrementally cross-

validate the IDTM algorithm and a dataset in time that is linear in the number of instances,

the number of features, and the number of label values makes the wrapper approach feasible

for large problems that would be impractical with other induction algorithms.

In Chapter 6, we described some properties of oblivious read-once decision graphs

(OODGs) and described a general framework for constructing OODGs bottom-up. We

proposed three solutions to the main problem of feature ordering: minimizing the width

of the next level, �nding an order based on minimizing mutual information, and using the

wrapper approach to minimize estimated accuracy. The last two approaches seem to work

best, with the wrapper approach performing the best but also being the slowest by far.

The HOODG family of algorithms successfully avoids the replication and the fragmenta-

tion problems, two of the main problems with decision trees and the recursive partitioning

algorithms that construct them. The graphs produced by the HOODG algorithms, shown

in Appendix D on page 217, used less features than C4.5 and were usually smaller and

easier for humans to comprehend.

7.2 Which Algorithm is Best?

For every single speci�c question, you can construct a language or system that is a
better answer than C++. C++'s strength comes from being a good answer to many

questions rather than being the best answer to one speci�c question. . .Thus, the
most a general-purpose language can hope for is to be \everybody's second choice."

|Stroustroup (1994)

There is no algorithm that dominates all others for all problems. For every single problem,

there is the perfect algorithm that guesses the target function with no input. The best

we can hope for is to understand the strengths and limitations of di�erent algorithms, and

based on background knowledge for a given domain, make recommendations as to which

algorithms to use.

One approach that can work well in practice is to try di�erent algorithms, estimate their

accuracy, and pick the one with the highest estimated accuracy. This method will work

well as long as there are not too many algorithms being tried and when we have reason to

believe that they are appropriate for the domain.
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Appendix E on page 244 shows a large experiment comparing the algorithms described

in this dissertation with others that are publicly available. On the real-world datasets,

the absolute di�erences are usually small on average, but for many applications they are

signi�cant and important (e.g., the relative reduction in error between C4.5 and Naive-

Bayes-FSS on the breast cancer dataset is 46.8%). On the real datasets, Naive-Bayes with

feature subset selection performed best, followed by simple Naive-Bayes, HOODG, and

IDTM. On the arti�cial datasets, OC1 was the best performer, followed by HOODG and

IDTM.

One explanation for the surprising success of Naive-Bayes in this dissertation is the large

number of medical datasets used. Although we chose the datasets based on what we believe

are rational criteria, it turned out that many of them are related to medical domains, where

features are usually well understood and probabilistically independent given the label value.

The other unexpected result in this dissertation is the power of decision tables. In the

original paper on decision tables (Kohavi 1995a), their power was noted, but they failed for

domains with continuous features. In this dissertation, the data has been discretized, and

IDTM appears to be a truly powerful algorithm for many real-world datasets.

An interesting observation made by Trevor Hastie is that Naive-Bayes and DTMs rep-

resent extreme classi�ers in terms of feature interaction. Naive-Bayes assumes that the

features are independent given the label and DTMs represent full-interaction models. With

the exception of the soybean-large dataset, the di�erences are surprisingly small given the

di�erent models used.

The title of the dissertation has the words \performance enhancement" in it because

generic tools such as the wrapper approach work in practice and tend to improve perfor-

mance on existing algorithms, even though the exact theoretical justi�cation is not yet well

understood. The wrapper approach relies on accuracy estimation to guide a search, but

all accuracy estimation methods fail sometimes and there is no guarantee that any such

meta-level approach will really help.

The power and the weakness of the wrapper approach lies in its generality. For well-

understood algorithms, such as linear regression, the wrapper is not very useful because

better and faster methods exist for problems of interest such as feature subset selection;

however, analyzing complex algorithms such as C4.5 and HOODG is practically impossible,

and in these cases the wrapper approach provides an excellent tool.
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7.3 Concluding Remarks

Smart companies can be �guring out how they will use a technology, even while
its developers are still polishing their prototypes

|Hammer and Champy, Reengineering the Corporation, 1993

An old Kodak advertisement said \you press the button, and we'll do the rest." We

wish machine learning could be the same: you gather data, the induction algorithm will do

the rest. Regrettably, we know that such a dream is impossible. A lot of e�ort must be

put into choosing features, integrating background knowledge into the induction algorithm,

changing the representations, and reiterating. Langley & Simon (to appear) wrote that in

their surveyed projects \much of the power comes not from the speci�c induction method,

but from proper formulation of the problems and from crafting the representation to make

learning tractable."

Although on a large set of problems induction algorithms tend to perform similarly,

there are signi�cant di�erences for speci�c datasets. In practice, one is interested in the

best algorithm for the data being studied, not an average performance across many do-

mains. This dissertation adds to our understanding of the biases and assumptions made by

induction algorithms.

Feigenbaum (1988) wrote: \I have worked in the science and technology of Arti�cial

Intelligence for 20 years and confess to being chronically optimistic about its progress."

Herb Simon, at an invited talk in IJCAI-95, said he was only o� by about 40 years when he

said that in ten years a computer program will beat any human human chess player. We

will avoid making concrete predictions about future successes of the machine learning �eld,

but we are optimistic that it will be an inuential �eld in the real world.



Appendix A

Tabulated Results for Accuracy

Estimation

The following tables include the detailed experimental results for accuracy estimation.

C4.5 accuracies for cross-validation with varying folds

Dataset size 2 folds 5 folds 10 folds 20 folds leave 5 out leave 2 out

breast cancer 50/699 89.78�0.66 90.14�0.73 91.19�0.71 91.41�0.71 91.19�0.71 91.59�0.71

chess 900/3196 96.69�0.12 97.79�0.08 97.96�0.08 98.11�0.08 98.16�0.08 98.15�0.08

hypothyroid 400/3163 97.67�0.14 98.23�0.11 98.27�0.12 98.42�0.10 98.35�0.11 98.37�0.12

mushroom 800/8124 98.76�0.06 99.01�0.05 99.08�0.05 99.15�0.06 99.20�0.07 99.21�0.07

soybean 100/683 54.47�0.98 66.36�0.91 68.42�0.78 69.82�0.90 69.82�0.90 71.23�0.94

vehicle 100/846 51.89�1.06 57.62�0.89 59.61�0.79 58.96�0.80 58.96�0.80 59.03�0.97

rand 100/3000 50.12�0.74 49.46�0.77 50.74�0.80 50.00�0.83 50.00�0.83 48.88�0.95

Naive-Bayes accuracies for cross-validation with varying folds

Dataset size 2 folds 5 folds 10 folds 20 folds leave 5 out leave 2 out

breast cancer 50/699 91.79�0.60 93.91�0.37 94.11�0.35 94.20�0.34 94.11�0.35 94.23�0.35

chess 900/3196 85.61�0.20 86.39�0.20 86.51�0.19 86.61�0.19 86.60�0.18 86.57�0.19

hypothyroid 400/3163 97.31�0.13 97.53�0.10 97.53�0.11 97.55�0.11 97.55�0.10 97.53�0.10

mushroom 800/8124 93.83�0.10 94.32�0.09 94.45�0.08 94.49�0.08 94.52�0.08 94.53�0.08

soybean 100/683 68.99�0.75 76.69�0.61 78.20�0.68 79.03�0.67 79.03�0.67 79.69�0.65

vehicle 100/846 46.66�0.90 47.32�0.75 47.28�0.79 47.27�0.79 47.27�0.79 47.28�0.74

rand 100/3000 49.94�0.84 50.44�0.91 50.14�0.94 50.04�1.00 50.04�1.00 50.40�0.97

195
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C4.5 accuracies for strati�ed cross-validation with varying folds

Dataset size 2 folds 5 folds 10 folds 20 folds leave 5 out leave 2 out

breast cancer 50/699 89.90�0.74 91.03�0.66 91.75�0.60 91.52�0.67 91.75�0.60 91.47�0.71

chess 900/3196 96.72�0.11 97.70�0.08 97.88�0.07 98.05�0.08 98.16�0.08 98.14�0.08

hypothyroid 400/3163 97.81�0.12 98.18�0.10 98.33�0.11 98.45�0.10 98.36�0.12 98.39�0.12

mushroom 800/8124 98.81�0.05 99.02�0.05 99.11�0.06 99.18�0.06 99.21�0.07 99.21�0.07

soybean 100/683 61.43�0.91 71.04�0.78 71.83�0.77 71.66�0.90 71.66�0.90 71.44�0.93

vehicle 100/846 54.66�0.93 59.51�0.81 59.94�0.84 59.94�0.90 59.94�0.90 59.50�0.96

rand 100/3000 50.90�0.78 51.28�0.66 50.78�0.62 49.74�0.83 49.74�0.83 49.54�0.93

Naive-Bayes accuracies for strati�ed cross-validation with varying folds

Dataset size 2 folds 5 folds 10 folds 20 folds leave 5 out leave 2 out

breast cancer 50/699 91.19�0.63 93.55�0.40 93.95�0.37 93.98�0.39 93.95�0.37 93.91�0.38

chess 900/3196 85.39�0.22 86.22�0.19 86.46�0.18 86.49�0.18 86.58�0.19 86.58�0.19

hypothyroid 400/3163 97.44�0.10 97.52�0.10 97.52�0.10 97.57�0.10 97.54�0.10 97.52�0.10

mushroom 800/8124 94.03�0.09 94.32�0.08 94.47�0.08 94.49�0.08 94.52�0.08 94.53�0.08

soybean 100/683 77.37�0.66 80.08�0.64 80.14�0.63 80.08�0.65 80.08�0.65 79.89�0.67

vehicle 100/846 48.84�0.76 48.16�0.68 47.98�0.59 47.72�0.70 47.72�0.70 47.64�0.73

rand 100/3000 50.44�0.90 50.28�0.92 50.66�0.90 51.40�0.98 51.40�0.98 50.74�0.91
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True accuracies for fractions of the data compared with the matching cross-validation

estimate (Section 3.4.1 on page 54). 90% corresponds to the sample size used by ten-fold

cross-validation 50% corresponds to the sample size used by two-folds.

Dataset sample-size C4.5 5x10 fold c4.5 5x2 fold

/ total size 90% data 50% data

breast cancer 50/699 91.34�0.33 91.36�0.59 90.13�0.38 90.26�0.56

chess 900/3196 97.86�0.10 97.97�0.07 96.79�0.13 96.75�0.08

hypothyroid 400/3163 98.30�0.09 98.32�0.11 97.88�0.13 97.69�0.07

mushroom 800/8124 99.19�0.08 99.13�0.05 98.71�0.08 98.77�0.04

soybean 100/683 68.59�0.77 68.85�0.74 53.85�1.01 54.40�0.62

vehicle 100/846 58.99�0.49 59.02�0.71 51.71�0.67 51.94�0.63

rand 100/3000 49.92�0.12 50.02�0.63 49.94�0.13 50.12�0.43

True accuracies for fractions of the data compared with the matching strati�ed estimate.

90% corresponds to the sample size used by ten-fold cross-validation 50% corresponds to

the sample size used by two-folds.

Dataset sample-size C4.5 5x10 fold c4.5 5x2 fold

/ total size 90% data strati�ed 50% data strati�ed

breast cancer 50/699 91.34�0.33 91.29�0.64 90.13�0.38 89.82�0.53

chess 900/3196 97.86�0.10 97.96�0.07 96.79�0.13 96.67�0.07

hypothyroid 400/3163 98.30�0.09 98.33�0.10 97.88�0.13 97.87�0.08

mushroom 800/8124 99.19�0.08 99.12�0.05 98.71�0.08 98.75�0.04

soybean 100/683 68.59�0.77 71.74�0.77 53.85�1.01 60.81�0.75

vehicle 100/846 58.99�0.49 60.04�0.74 51.71�0.67 54.20�0.62

rand 100/3000 49.92�0.12 50.27�0.57 49.94�0.13 50.52�0.39



APPENDIX A. TABULATED RESULTS FOR ACCURACY ESTIMATION 198

A.1 Five runs

C4.5 accuracies for �ve times cross-validation with varying folds

Dataset size 2 folds 5 folds 10 folds 20 folds leave 5 out leave 2 out

breast cancer 50/699 90.26�0.56 90.88�0.57 91.36�0.59 91.35�0.66 91.36�0.59 91.40�0.67

chess 900/3196 96.75�0.08 97.72�0.07 97.97�0.07 98.07�0.07 98.14�0.08 98.15�0.08

hypothyroid 400/3163 97.69�0.07 98.20�0.10 98.32�0.11 98.36�0.11 98.38�0.11 98.38�0.12

mushroom 800/8124 98.77�0.04 99.03�0.04 99.13�0.05 99.17�0.05 99.21�0.07 99.21�0.07

soybean 100/683 54.40�0.62 66.28�0.68 68.85�0.74 70.28�0.81 70.28�0.81 71.25�0.91

vehicle 100/846 51.94�0.63 57.79�0.63 59.02�0.71 59.29�0.79 59.29�0.79 59.31�0.89

rand 100/3000 50.12�0.43 49.74�0.51 50.02�0.63 49.57�0.71 49.57�0.71 49.04�0.88

Naive-Bayes accuracies for �ve times cross-validation with varying folds

Dataset size 2 folds 5 folds 10 folds 20 folds leave 5 out leave 2 out

breast cancer 50/699 91.30�0.39 93.74�0.33 94.07�0.34 94.06�0.35 94.07�0.34 94.10�0.35

chess 900/3196 85.63�0.17 86.34�0.19 86.45�0.19 86.52�0.19 86.55�0.19 86.55�0.19

hypothyroid 400/3163 97.33�0.09 97.50�0.10 97.52�0.10 97.54�0.10 97.54�0.10 97.53�0.10

mushroom 800/8124 93.91�0.08 94.32�0.08 94.43�0.08 94.47�0.08 94.51�0.08 94.52�0.08

soybean 100/683 68.52�0.52 76.87�0.60 78.41�0.63 79.20�0.64 79.20�0.64 79.76�0.66

vehicle 100/846 46.92�0.61 47.04�0.66 47.12�0.70 47.37�0.70 47.37�0.70 47.22�0.74

rand 100/3000 50.00�0.61 49.75�0.77 49.81�0.85 50.05�0.91 50.05�0.91 50.00�0.92

C4.5 accuracies for �ve times strati�ed cross-validation with varying folds

Dataset size 2 folds 5 folds 10 folds 20 folds Leave 5 out

breast cancer 50/699 89.82�0.53 90.95�0.57 91.29�0.64 91.47�0.64 91.29�0.64

chess 900/3196 96.67�0.07 97.71�0.07 97.96�0.07 98.06�0.07 98.15�0.08

hypothyroid 400/3163 97.87�0.08 98.19�0.10 98.33�0.10 98.37�0.11 98.38�0.11

mushroom 800/8124 98.75�0.04 99.05�0.04 99.12�0.05 99.16�0.06 99.21�0.07

soybean 100/683 60.81�0.75 71.01�0.69 71.74�0.77 71.67�0.83 71.67�0.83

vehicle 100/846 54.20�0.62 58.92�0.62 60.04�0.74 60.10�0.83 60.10�0.83

rand 100/3000 50.52�0.39 50.94�0.42 50.27�0.57 49.66�0.69 49.66�0.69

Naive-Bayes accuracies for �ve times strati�ed cross-validation with varying folds

Dataset size 2 folds 5 folds 10 folds 20 folds leave 5 out

breast cancer 50/699 91.41�0.36 93.67�0.32 93.96�0.33 94.03�0.35 93.96�0.33

chess 900/3196 85.57�0.16 86.27�0.18 86.47�0.19 86.52�0.18 86.56�0.19

hypothyroid 400/3163 97.34�0.10 97.51�0.10 97.52�0.10 97.53�0.10 97.54�0.10

mushroom 800/8124 93.89�0.09 94.32�0.08 94.44�0.08 94.49�0.08 94.52�0.08

soybean 100/683 76.47�0.57 80.19�0.61 80.08�0.63 80.14�0.65 80.14�0.65

vehicle 100/846 47.61�0.52 47.64�0.65 47.62�0.65 47.57�0.71 47.57�0.71

rand 100/3000 51.16�0.63 50.99�0.82 51.10�0.86 50.92�0.92 50.92�0.92
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A.2 Varying Times

C4.5 accuracies for varying times on two-fold cross-validation

Dataset one time 2 times 3 times 5 times 10 times 20 times 50 times 100 times

breast cancer 89.78�0.66 90.21�0.58 89.98�0.61 90.26�0.56 90.30�0.50 90.06�0.48 89.94�0.48 89.92�0.47

chess 96.69�0.12 96.73�0.09 96.72�0.09 96.75�0.08 96.74�0.07 96.75�0.06 96.74�0.06 96.74�0.06

hypothyroid 97.67�0.14 97.73�0.09 97.73�0.09 97.69�0.07 97.75�0.07 97.70�0.08 97.70�0.07 97.70�0.07

mushroom 98.76�0.06 98.77�0.05 98.79�0.05 98.77�0.04 98.77�0.04 98.78�0.04 98.77�0.04 98.77�0.04

soybean 54.47�0.98 53.83�0.72 53.92�0.58 54.40�0.62 54.72�0.65 54.94�0.64 54.81�0.65 54.70�0.65

vehicle 51.89�1.06 52.53�0.80 52.29�0.71 51.94�0.63 52.37�0.58 52.33�0.53 52.55�0.52 52.64�0.52

rand 50.12�0.74 50.39�0.65 50.21�0.53 50.12�0.43 50.03�0.38 50.04�0.34 50.13�0.31 50.07�0.31

Naive-Bayes accuracies for varying times on two-fold cross-validation

Dataset one time 2 times 3 times 5 times 10 times 20 times 50 times 100 times

breast cancer 91.79�0.60 91.91�0.46 91.53�0.43 91.30�0.39 91.24�0.32 90.97�0.28 91.00�0.27 91.02�0.27

chess 85.61�0.20 85.62�0.19 85.67�0.18 85.63�0.17 85.53�0.16 85.52�0.16 85.52�0.17 85.51�0.17

hypothyroid 97.31�0.13 97.32�0.11 97.31�0.10 97.33�0.09 97.35�0.09 97.34�0.09 97.35�0.09 97.35�0.09

mushroom 93.83�0.10 93.86�0.09 93.89�0.09 93.91�0.08 93.90�0.08 93.94�0.08 93.94�0.08 93.94�0.08

soybean 68.99�0.75 68.81�0.68 68.43�0.60 68.52�0.52 68.77�0.54 68.89�0.52 68.62�0.54 68.73�0.53

vehicle 46.66�0.90 46.82�0.71 46.87�0.66 46.92�0.61 47.10�0.52 47.06�0.50 47.08�0.49 47.03�0.49

rand 49.94�0.84 49.60�0.73 49.85�0.66 50.00�0.61 49.78�0.60 50.00�0.59 50.01�0.59 49.98�0.60

C4.5 accuracies for varying times on ten-fold cross-validation

Dataset size one time 2 times 3 times 5 times 10 times 20 times

breast cancer 50/699 91.19�0.71 91.35�0.62 91.37�0.61 91.36�0.59 91.29�0.59 91.29�0.59

chess 900/3196 97.96�0.08 97.95�0.07 97.96�0.07 97.97�0.07 97.94�0.07 97.94�0.07

hypothyroid 400/3163 98.27�0.12 98.29�0.11 98.29�0.11 98.32�0.11 98.31�0.10 98.31�0.10

mushroom 800/8124 99.08�0.05 99.12�0.05 99.09�0.05 99.13�0.05 99.13�0.05 99.12�0.05

soybean 100/683 68.42�0.78 68.56�0.76 68.60�0.75 68.85�0.74 68.92�0.75 69.08�0.73

vehicle 100/846 59.61�0.79 59.02�0.76 59.14�0.75 59.02�0.71 58.96�0.72 58.92�0.72

rand 100/3000 50.74�0.80 50.70�0.69 50.34�0.68 50.02�0.63 49.86�0.57 49.94�0.53

Naive-Bayes accuracies for varying times on ten-fold cross-validation

Dataset size one time 2 times 3 times 5 times 10 times 20 times

breast cancer 50/699 94.11�0.35 94.13�0.34 94.15�0.33 94.07�0.34 94.00�0.33 93.95�0.33

chess 900/3196 86.51�0.19 86.50�0.18 86.47�0.18 86.45�0.19 86.44�0.18 86.43�0.18

hypothyroid 400/3163 97.53�0.11 97.54�0.10 97.51�0.10 97.52�0.10 97.52�0.10 97.52�0.10

mushroom 800/8124 94.45�0.08 94.44�0.08 94.44�0.08 94.43�0.08 94.42�0.08 94.43�0.08

soybean 100/683 78.20�0.68 78.38�0.62 78.34�0.62 78.41�0.63 78.40�0.61 78.43�0.62

vehicle 100/846 47.28�0.79 47.16�0.75 47.14�0.73 47.12�0.70 47.20�0.69 47.24�0.67

rand 100/3000 50.14�0.94 49.84�0.86 49.93�0.86 49.81�0.85 49.77�0.88 50.03�0.87



APPENDIX A. TABULATED RESULTS FOR ACCURACY ESTIMATION 200

C4.5 accuracies for varying times on two-fold strati�ed cross-validation

Dataset size one time 2 times 3 times 5 times 10 times 20 times

breast cancer 50/699 89.90�0.74 90.07�0.56 89.78�0.60 89.82�0.53 90.04�0.49 90.20�0.45

chess 900/3196 96.72�0.11 96.65�0.10 96.69�0.08 96.67�0.07 96.75�0.07 96.75�0.06

hypothyroid 400/3163 97.81�0.12 97.87�0.09 97.88�0.08 97.87�0.08 97.82�0.07 97.81�0.07

mushroom 800/8124 98.81�0.05 98.76�0.04 98.75�0.04 98.75�0.04 98.78�0.04 98.77�0.04

soybean 100/683 61.43�0.91 60.37�0.82 60.90�0.75 60.81�0.75 61.01�0.76 61.19�0.76

vehicle 100/846 54.66�0.93 54.41�0.74 54.20�0.65 54.20�0.62 54.30�0.56 54.19�0.52

rand 100/3000 50.90�0.78 50.39�0.56 50.55�0.47 50.52�0.39 50.68�0.38 50.84�0.33

Naive-Bayes accuracies for varying times on two-fold strati�ed cross-validation

Dataset size one time 2 times 3 times 5 times 10 times 20 times

breast cancer 50/699 91.87�0.59 91.79�0.43 91.43�0.39 91.41�0.36 91.35�0.29 91.38�0.26

chess 900/3196 85.54�0.19 85.58�0.16 85.63�0.15 85.57�0.16 85.54�0.17 85.58�0.17

hypothyroid 400/3163 97.34�0.12 97.34�0.11 97.36�0.11 97.34�0.10 97.36�0.10 97.37�0.10

mushroom 800/8124 93.82�0.10 93.87�0.09 93.90�0.09 93.89�0.09 93.92�0.08 93.93�0.08

soybean 100/683 76.26�0.64 76.44�0.60 76.39�0.59 76.47�0.57 76.59�0.55 76.51�0.56

vehicle 100/846 47.10�0.77 46.92�0.66 47.27�0.56 47.61�0.52 47.65�0.53 47.53�0.51

rand 100/3000 50.84�0.90 51.23�0.78 51.08�0.72 51.16�0.63 50.92�0.59 50.94�0.59

C4.5 accuracies for varying times on strati�ed ten-fold cross-validation

Dataset size one time 2 times 3 times 5 times 10 times 20 times

breast cancer 50/699 91.75�0.60 91.40�0.65 91.23�0.63 91.29�0.64 91.35�0.62 91.43�0.60

chess 900/3196 97.88�0.07 97.99�0.07 97.99�0.07 97.96�0.07 97.95�0.07 97.96�0.07

hypothyroid 400/3163 98.33�0.11 98.34�0.10 98.33�0.11 98.33�0.10 98.36�0.10 98.34�0.10

mushroom 800/8124 99.11�0.06 99.12�0.05 99.12�0.05 99.12�0.05 99.12�0.05 99.12�0.05

soybean 100/683 71.83�0.77 71.87�0.79 71.61�0.77 71.74�0.77 71.58�0.73 71.60�0.73

vehicle 100/846 59.94�0.84 59.79�0.79 59.62�0.79 60.04�0.74 60.03�0.74 59.93�0.74

rand 100/3000 50.78�0.62 50.52�0.69 50.06�0.65 50.27�0.57 50.45�0.53 50.28�0.51

Naive-Bayes accuracies for varying times on strati�ed ten-fold cross-validation

Dataset size one time 2 times 3 times 5 times 10 times 20 times

breast cancer 50/699 93.95�0.37 93.95�0.36 93.98�0.34 93.96�0.33 93.94�0.34 93.95�0.33

chess 900/3196 86.46�0.18 86.51�0.19 86.49�0.18 86.47�0.19 86.49�0.19 86.48�0.19

hypothyroid 400/3163 97.52�0.10 97.50�0.10 97.51�0.10 97.52�0.10 97.52�0.10 97.54�0.10

mushroom 800/8124 94.47�0.08 94.46�0.08 94.44�0.08 94.44�0.08 94.43�0.08 94.44�0.08

soybean 100/683 80.14�0.63 80.07�0.62 80.08�0.61 80.08�0.63 80.15�0.63 80.09�0.63

vehicle 100/846 47.98�0.59 47.47�0.68 47.41�0.67 47.62�0.65 47.63�0.66 47.65�0.65

rand 100/3000 50.66�0.90 51.46�0.83 50.94�0.86 51.10�0.86 51.08�0.88 50.89�0.86
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A.3 Trimming

C4.5 accuracies for varying times with 10% trimmed two-fold cross-validation.

Note that only at �ve times does trimming kick in because below that we have less than

10 folds.

Dataset size one time 2 times 3 times 5 times 10 times 20 times

breast cancer 50/699 89.78�0.66 90.21�0.58 89.98�0.61 90.75�0.56 90.86�0.53 90.70�0.51

chess 900/3196 96.69�0.12 96.73�0.09 96.72�0.09 96.81�0.08 96.81�0.07 96.82�0.06

hypothyroid 400/3163 97.67�0.14 97.73�0.09 97.73�0.09 97.78�0.08 97.84�0.08 97.79�0.08

mushroom 800/8124 98.76�0.06 98.77�0.05 98.79�0.05 98.77�0.05 98.78�0.04 98.79�0.04

soybean 100/683 54.47�0.98 53.83�0.72 53.92�0.58 54.56�0.67 54.86�0.67 55.14�0.66

vehicle 100/846 51.89�1.06 52.53�0.80 52.29�0.71 52.02�0.64 52.53�0.59 52.48�0.52

rand 100/3000 50.12�0.74 50.39�0.65 50.21�0.53 50.18�0.44 50.05�0.39 50.05�0.34

Naive-Bayes accuracies for varying times with 10% trimmed two-fold cross-validation.

Note that only at �ve times does trimming kick in because below that we have less than

10 folds.

Dataset size one time 2 times 3 times 5 times 10 times 20 times

breast cancer 50/699 91.79�0.60 91.91�0.46 91.53�0.43 91.87�0.38 91.94�0.33 91.88�0.30

chess 900/3196 85.61�0.20 85.62�0.19 85.67�0.18 85.68�0.17 85.58�0.17 85.57�0.16

hypothyroid 400/3163 97.31�0.13 97.32�0.11 97.31�0.10 97.39�0.09 97.40�0.09 97.39�0.09

mushroom 800/8124 93.83�0.10 93.86�0.09 93.89�0.09 93.90�0.08 93.90�0.08 93.93�0.08

soybean 100/683 68.99�0.75 68.81�0.68 68.43�0.60 68.59�0.53 68.78�0.54 68.93�0.52

vehicle 100/846 46.66�0.90 46.82�0.71 46.87�0.66 46.76�0.62 47.04�0.52 47.03�0.50

rand 100/3000 49.94�0.84 49.60�0.73 49.85�0.66 50.08�0.62 49.80�0.58 50.01�0.59
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C4.5 accuracies for varying times with 10% trimmed ten-fold cross-validation.

Dataset size one time 2 times 3 times 5 times 10 times 20 times

breast cancer 50/699 92.70�0.74 92.84�0.64 93.06�0.63 93.10�0.60 92.99�0.60 93.04�0.58

chess 900/3196 98.07�0.08 98.08�0.08 98.10�0.07 98.11�0.07 98.08�0.07 98.09�0.07

hypothyroid 400/3163 98.60�0.12 98.60�0.11 98.60�0.11 98.60�0.11 98.61�0.11 98.61�0.10

mushroom 800/8124 99.26�0.06 99.29�0.06 99.27�0.05 99.32�0.05 99.30�0.05 99.30�0.05

soybean 100/683 68.86�0.80 68.93�0.79 68.99�0.79 69.29�0.79 69.42�0.78 69.51�0.75

vehicle 100/846 59.76�0.80 59.21�0.77 59.37�0.77 59.22�0.73 59.20�0.74 59.18�0.75

rand 100/3000 50.63�0.79 50.67�0.68 50.37�0.67 50.03�0.64 49.90�0.58 49.92�0.54

Naive-Bayes accuracies for varying times with 10% trimmed ten-fold cross-validation.

Dataset size one time 2 times 3 times 5 times 10 times 20 times

breast cancer 50/699 95.82�0.37 96.06�0.37 96.10�0.36 95.98�0.35 95.88�0.35 95.88�0.35

chess 900/3196 86.60�0.20 86.61�0.19 86.58�0.18 86.58�0.19 86.55�0.19 86.54�0.18

hypothyroid 400/3163 97.78�0.12 97.81�0.11 97.78�0.11 97.79�0.10 97.80�0.10 97.79�0.10

mushroom 800/8124 94.54�0.09 94.52�0.08 94.53�0.08 94.55�0.08 94.53�0.08 94.54�0.08

soybean 100/683 78.59�0.74 78.90�0.67 78.86�0.65 78.93�0.64 78.97�0.63 78.95�0.64

vehicle 100/846 47.40�0.82 47.17�0.77 47.10�0.76 47.05�0.72 47.09�0.70 47.17�0.69

rand 100/3000 50.28�0.92 49.84�0.88 49.83�0.88 49.74�0.86 49.80�0.89 49.99�0.89

A.4 Is Strati�cation Optimistic?

True accuracies for portions of the data. 90% corresponds to the sample size ten-fold

cross-validation is using and 50% corresponds to the sample size two-fold is using.

Dataset sample-size C4.5 Naive-Bayes c4.5 Naive-Bayes

/ total size 90% data 90% data 50% data 50% data

breast cancer 50/699 91.34�0.33 93.92�0.29 90.13�0.38 91.26�0.68

chess 900/3196 97.86�0.10 86.60�0.22 96.79�0.13 85.91�0.30

hypothyroid 400/3163 98.30�0.09 97.62�0.05 97.88�0.13 97.52�0.06

mushroom 800/8124 99.19�0.08 94.33�0.10 98.71�0.08 93.80�0.12

soybean 100/683 68.59�0.77 78.41�0.47 53.85�1.01 68.34�0.54

vehicle 100/846 58.99�0.49 47.60�0.51 51.71�0.67 47.26�0.47

rand 100/3000 49.92�0.12 50.01�0.13 49.94�0.13 50.08�0.13



Appendix B

General Logic Diagrams for IDTM

A-priori, one might not consider decision-tables as comprehensible structures, unless they

are very small. In fact, for all datasets, except for soybean-large and DNA, they are very

small. The following �gures show the General Logic Diagram (GLD) for all the datasets

except three: the soybean-large dataset could not be displayed with our software because

it has 19 classes; the Monk2 and m-of-n-3-7-10 datasets were not displayed because the

accuracy was very low (m-of-n-3-7-10 just predicts the majority class).

A GLD provides a way of displaying up to about ten dimensions in a graphical represen-

tation that can be easily understood. GLDs were described in Michalski (1978) and later

used in Thrun et al. (1991), Wnek & Michalski (1994), and Kohavi (1994d).

Each possible instance in the projected space de�ned by the decision table's schema has

exactly one box that is shaded according to the prediction made there (all GLDs shown

below have only two shades of grey for the classes, except for DNA which has three classes

and thus three shades of grey). Readers familiar with Karnaugh maps may note a resem-

blance, except that the ordering of feature values does not conform to the hamming distance

restriction in Karnaugh maps (GLDs are not restricted to Boolean features).

To avoid showing ten diagrams, we used 1/3 holdout (the training set was two-thirds

of the dataset, the test set was one third of the dataset) and IDTM to generate the GLDs.

Because the data was pre-discretized, ranges are shown for continuous features, with \inf"

denoting in�nity. The ordering on the features was chosen to be the same ordering found

by the wrappers, i.e., the �rst two features found are the outermost features on each axis.
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Mitoses Bare-Nuclei

Figure B.1: The GLD for IDTM on dataset breast cancer.
Accuracy: 94.42%

To classify an instance using the GLD, one �nds the range (or value) of the outer features
and then repeats for inner features. For example, an instance with Mitoses of 2 would fall
in the lower half of the GLD because it is in the range 1.5 to in�nity. If the Bare-Nuclei
is 1, it would then fall in the fourth row of table because it is in the range -in�nity to 2.5
and Mitoses indicated that we should be in the lower half. The Uniformity of Cell Shape
would determine the unique square within that row, and the shade of grey determines the
predicted class.
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Figure B.2: The GLD for IDTM on dataset cleveland heart disease.
Accuracy: 79.21%
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Figure B.3: The GLD for IDTM on dataset australian credit screening (crx).
Accuracy: 80.50%
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Figure B.5: The GLD for IDTM on dataset horse colic.
Accuracy: 77.94%
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Figure B.6: The GLD for IDTM on dataset Pima Indian diabetes.
Accuracy: 79.30%
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Figure B.7: The GLD for IDTM on dataset sick euthyroid.
Accuracy: 97.35%
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Figure B.8: The GLD for IDTM on dataset corral.
Accuracy: 100.00%
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Figure B.9: The GLD for IDTM on dataset Monk1.
Accuracy: 100.00%
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Figure B.10: The GLD for IDTM on dataset Monk2-local.
Accuracy: 100.00%
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Figure B.11: The GLD for IDTM on dataset Monk3.
Accuracy: 97.22%



Appendix C

Hardness of Minimal Projection

We provide a proof that minimal projection is NP-complete (Theorem 14 on page 172).

Theorem 14

The following decision problem is NP-complete:

Given a set of labelled instances, an ordering on the n features, and two positive integers

w and `; is there an OODG that has width � w at level ` and that correctly classi�es all

instances?

Proof: To show NP-completeness, we have to show that the problem is in NP, and that

it is NP-hard. The problem is in NP because verifying a given solution is easy to do in

polynomial time: one only needs to check that the graph is legal, that level ` is of width

w, and that all instances are correctly classi�ed by the OODG. Note that if there are m

instances in the input, the width of a level need never exceed m, and so the overall size

of the OODG can be bounded by m � n (polynomial in the input size). To prove that the

problem is NP-hard, we show a reduction from k-colorability (chromatic number).

Graph k-colorability is de�ned as follows (Garey & Johnson 1979, p. 191). Given a

graph G = (V;E) and a positive integer k � jV j, is G k-colorable, i.e., does there exist a

function f : V 7! f1; 2; : : : ; kg such that f(u) 6= f(v) whenever hu; vi 2 E?
Given a graph G = (V;E) for the k-colorability problem, we construct the following

projection problem for OODGs. We de�ne w, the desired width, to be k and de�ne `,

the desired level to minimize, to be dlogne + 1 (all logs are base two). Without loss of

generality, we assume that the ordering of features is X1 to Xn (otherwise, shu�e the bits

in the instances de�ned below according to the order). The instances we construct will all
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contain 2 dlog ne bits that encode two numbers, each one of size log n bits (i.e., the �rst

number will occupy bits 1 to dlogne and the second number will occupy bits dlogne + 1 to

2 dlogne). We will denote each instance by hu � v; ci, where u and v are numbers that can

be represented by dlog ne bits each (they make up the unlabelled part of the instance), and

c is the Boolean label. We now describe the construction of the training set, which will be

of size 2 � jEj+ jV j:

1. For each node v in G, construct an instance hv � v; 0i.

2. For each edge in hu; vi 2 E create two instances: hu � v; 1i and hv � u; 1i.

We now have to show that G is k-colorable i� an appropriate OODG can be constructed

for the training set de�ned.

(k-colorability ! OODG): Given a coloring function f , we show how to construct level

`. Create k nodes, 1 to k, and assign each instance < u �v; c > to node f(u). We can clearly

build an OODG mapping the instances from the root to level ` because by our assignment,

there cannot be two di�erent nodes with the same �rst dlogne bits at di�erent nodes in
level `, hence nodes 1 to ` need to implement a deterministic function on ` � 1 features,

which is always possible. To show that we can build the bottom half of the OODG, we

need to show that no two instances at the same node have their last dlog ne bits the same
(i.e., all instances at a node are consistent). Once this is shown, it is not hard to see that

one can build an oblivious decision tree from each node, and then compress the tree to an

OODG. Suppose, to the contrary, that there exist two instances at a given node that are

inconsistent, i.e., we have ~x1 = hu � v; 1i and ~x2 = hv � v; 0i (all nodes going to 0 are of

the form hv � v; 0i and inconsistency means that ~x1 has the same last dlogne bits as ~x2).
According to our construction, hu � v; 1i indicates an edge between nodes u and v and we

have a contradiction with the fact that f was a legal coloring.

(OODG! k-colorability): Given an OODG, number the nodes at level ` in the OODG,

and de�ne f , the coloring function, to map each node v to the node number that instance

hv � 0i reaches at level `. To show that this is a legal graph coloring, assume to the contrary,

that there exist an edge hu; vi 2 E and that nodes u, v are assigned the same color. In

the OODG, the instances hu � vi and hv � vi must then both pass through the same node at

level `, but this implies that the OODG does not correctly classify both, since from level `,

the �rst has to reach leaf 1 and the other leaf 0.



Appendix D

The Graphs for C4.5 and

HOODG-Middle

The comprehensibility of a classi�er's structure (e.g., a decision tree or graph) is a subjective

judgment. The following �gures show the trees and the OODGs generated by C4.5 and

HOODG-Middle. To avoid showing ten trees for the cross-validation runs, we used a 1/3

holdout (the training set was two-thirds of the dataset, the test set was one third of the

dataset) to generate the trees and graphs.

Because the OODG graphs depend on discretized data, each edge is labelled with the

discretized interval, where \inf" denotes in�nity.

Note: the graphs shown are intended to show the structures induced. Because some

graphs contain many nodes, the text at the nodes may not be readable; the exact text is

unimportant for our purpose, which is to compare the structures of the induced trees and

graphs.
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Figure D.2: The OODG generated by HOODG-Middle for breast cancer.
Accuracy: 96.02%.



APPENDIX D. THE GRAPHS FOR C4.5 AND HOODG-MIDDLE 220

E
xe

rc
is

e 
in

du
ce

d 
an

gi
na

T
re

st
bp

s

tr
ue

O
ld

pe
ak

fa
l

bu
ff

<
=

 1
05 O

ld
pe

ak>
 1

05

T
ha

l<
=

 2
.4

N
um

be
r 

of
 v

es
se

ls
 c

ol
or

ed

>
 2

.4

M
ax

 h
ea

rt
 r

at
e

<
=

 0
.4

si
ck

>
 0

.4

C
ho

le
st

er
ol

<
=

 1
64

bu
ff>

 1
64

si
ck

<
=

 2
41

Se
x>
 2

41

si
ck

m
al

e

bu
fffe
m

A
ge

no
rm

N
um

be
r 

of
 v

es
se

ls
 c

ol
or

ed

fi
x

C
ho

le
st

er
ol

re
v

Sl
op

e<
=

 0

si
ck

>
 0

bu
ff

<
=

 5
6

M
ax

 h
ea

rt
 r

at
e

>
 5

6

bu
ff

<
=

 0

si
ck>
 0

bu
ff

<
=

 2
11

C
ho

le
st

er
ol

>
 2

11

si
ck

<
=

 1
09 M

ax
 h

ea
rt

 r
at

e

>
 1

09

bu
ff

<
=

 1
57

Sl
op

e>
 1

57

M
ax

 h
ea

rt
 r

at
e

up

si
ck

fl
at

bu
ff

do
w

n

A
ge

<
=

 1
70

bu
ff>
 1

70

Se
x

<
=

 6
0

si
ck>

 6
0

si
ck

m
al

e

bu
fffe

m

si
ck

<
=

 3
04

bu
ff

>
 3

04

bu
ff

up

si
ckfl

at

bu
ff

do
w

n

Figure D.3: The decision tree generated by C4.5 for cleveland heart disease.
Accuracy: 73.74%.



A
P
P
E
N
D
IX

D
.
T
H
E
G
R
A
P
H
S
F
O
R
C
4
.5
A
N
D
H
O
O
D
G
-M
ID
D
L
E

221

buff sick

Max heart rate

146.5-Inf -Inf-146.5

Thal

norm fix rev

Thal

normfix

rev

Number of vessels colored

0.5-Inf

-Inf-0.5

Number of vessels colored

0.5-Inf

-Inf-0.5

Exercise induced angina

true

fal

F
igu

re
D
.4
:
T
h
e
O
O
D
G
g
en
erated

b
y
H
O
O
D
G
-M

id
d
le
for

clev
elan

d
h
eart

d
isease.

A
ccu

ra
cy
:
7
8.79

%
.



APPENDIX D. THE GRAPHS FOR C4.5 AND HOODG-MIDDLE 222

A
9

A
15

t

A
14

f

A
14

<
=

 5
00

ye
s>

 5
00

no

<
=

 4
20

A
13

>
 4

20

A
3

<
=

 1
02

A
2

>
 1

02

ye
s

<
=

 1
6.

16
5

A
2

>
 1

6.
16

5

A
14

<
=

 2
3.

08

A
8

>
 2

3.
08

no

<
=

 5
2.

83

ye
s>

 5
2.

83

ye
s

<
=

 1
29

no

>
 1

29

A
8<

=
 8

.6
65

no

>
 8

.6
65

A
7

<
=

 5

ye
s

>
 5

A
11

v

ye
s

h

A
2

bb

ye
s

j

ye
sn

no

z

ye
s

dd

no

ff

ye
s

o

A
2

<
=

 3

ye
s

>
 3

ye
s

<
=

 2
8.

33

no

>
 2

8.
33

ye
s

<
=

 2
3.

92

A
3

>
 2

3.
92

A
14

<
=

 1
.5

A
2

>
 1

.5

no

<
=

 2
00

A
13

>
 2

00

A
2<

=
 3

4.
5

ye
s

>
 3

4.
5

ye
s

g

ye
sp

no

s

A
14<

=
 3

3.
58

no

>
 3

3.
58

A
1

<
=

 3
40

ye
s

>
 3

40

no

b

ye
s

a

no

g

ye
sp

ye
s

s

Figure D.5: The decision tree generated by C4.5 for australian credit screening (crx).
Accuracy: 84.57%.
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Figure D.7: The decision tree generated by C4.5 for DNA split junctions.
Accuracy: 92.66%.
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Figure D.8: The OODG generated by HOODG-Middle for DNA split junctions.
Accuracy: 94.10%.
Not very comprehensible, but the accuracy di�erence is signi�cant: 19.6% relative improve-
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Figure D.9: The decision tree generated by C4.5 for Pima Indian diabetes.
Accuracy: 76.17%.
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Figure D.13: The decision tree generated by C4.5 for soybean-large.
Accuracy: 92.55%.
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Figure D.14: The OODG generated by HOODG-Middle for soybean-large.
Accuracy: 92.02%.
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Appendix E

Global Comparison

This appendix compares all the main algorithms used in this dissertation and other pub-

licly available algorithms. Instances with unknown values were removed, as in Chapter 6 on

page 141 (horse-colic was eliminated because removing instances with unknowns left only

one class). See Table 6.2 on page 176 for a description of the datasets and how the accu-

racy estimate was obtained (ten-fold cross-validation or a single test set). The following

algorithms were compared:

Baseline A majority induction algorithm (ignoring all features).

C4.5 The C4.5 algorithm with default parameter settings.

C4.5-AP C4.5 with automatic parameter tuning as described in Section 4.9 on page 119.

C4.5-FSS C4.5 with a backwards best-�rst search wrapper with compound operators (Sec-

tion 4.6).

C4.5-rules C4.5 in rule generation mode Quinlan (1993).

CN2 The CN2 V6.1 algorithm (Clark & Niblett 1989, Clark & Boswell 1991), which induces

decision rules.

HOODG The HOODG-Middle algorithm described in Chapter 6 on page 141.

IB1,IB4 The instance based algorithms described in Aha (1992) (version from 3/9/94).

The algorithms were executed with the storeall option as suggested by David Aha

(personal communication).
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IDTM The IDTM algorithm described in Chapter 5 on page 130.

NB Naive-Bayes with entropy discretization.

NB-FSS-back Naive-Bayes with entropy discretization and backward best-�rst search

wrapper with compound operators as described in Section 4.5 on page 102.

OC1 The OC1 V3.0 algorithm (Murthy, Kasif, Salzberg & Beigel 1993, Murthy, Kasif &

Salzberg 1994), which induces decision trees with oblique splits.

OneR The 1R induction algorithm described in Holte (1993). The implementation was

done inMLC++.
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Table E.1: A global comparison for real-world datasets.

Algo/Dataset breast cleve crx DNA Pima sick- soy- Average
cancer euth bean

Baseline 65.00 54.10 54.65 50.84 65.09 87.98 12.81 55.78
C4.5 95.32 74.98 84.08 92.66 71.60 97.84 92.54 87.00
C4.5-AP 95.32 76.70 86.07 92.41 70.18 97.91 91.93 87.22
C4.5-FSS 95.32 78.05 86.37 94.44 70.18 97.38 91.47 87.60
C4.5-rules 95.76 75.34 83.93 93.09 72.78 97.23 90.39 86.93
CN2 95.76 79.47 82.24 86.60 73.67 97.10 91.12 86.57
HOODG 95.32 82.80 85.31 94.10 74.47 97.07 91.47 88.65
IB1 96.07 76.07 81.46 76.60 70.03 88.80 90.76 82.83
IB4 96.94 78.12 86.67 78.40 73.93 87.80 90.24 84.59
IDTM 95.75 82.44 85.92 94.60 76.04 97.07 84.53 88.05
NB 97.10 86.67 87.88 93.34 71.43 94.14 91.23 88.83
NB-FSS 97.51 83.79 85.61 96.12 76.03 95.69 92.71 89.63
OC1 95.03 79.76 85.47 87.02 73.95 95.99 86.84 86.29
OneR 91.66 69.98 86.38 62.14 69.90 93.22 33.81 72.44

Table E.2: A global comparison for the arti�cial datasets.

Algo/Dataset corral m-of- Monk1 Monk2- Monk2 Monk3 Average
n local

Baseline 56.25 77.34 50.00 67.13 67.13 47.22 60.85
C4.5 81.25 85.55 75.69 70.37 65.05 97.22 79.19
C4.5-AP 100.00 91.99 83.33 83.33 67.13 97.22 87.17
C4.5-FSS 81.25 85.16 88.89 88.43 67.13 97.22 84.68
C4.5-rules 81.25 88.28 91.67 66.20 66.20 96.30 81.65
CN2 100.00 90.50 98.60 74.50 75.70 90.70 88.33
HOODG 81.25 100.00 100.00 100.00 64.35 97.22 90.47
IB1 91.40 89.30 76.60 67.40 67.40 86.30 79.73
IB4 76.60 84.50 70.10 59.70 53.70 58.60 67.20
IDTM 100.00 77.34 100.00 100.00 64.35 97.22 89.82
NB 90.62 86.43 71.30 60.65 61.57 97.22 77.97
NB-FSS 90.62 87.50 72.22 67.13 67.13 97.22 80.30
OC1 89.06 99.22 91.20 84.95 96.30 94.21 92.49
OneR 75.00 77.34 75.00 67.13 67.13 80.56 73.69



Appendix F

De�nition of Symbols

You've heard the de�nition of a drug: any substance which, when injected into
a laboratory animal, produces a publication.

|Anonymous

Notation Page de�ned Description

acc 17 The accuracy of a classi�er.

acc = Pr(C(~x) = y)

The probability of correctly classifying a randomly

selected instance ~x.

accs 38 The resubstitution estimate of accuracy.

acch 39 The holdout estimate of accuracy.

acccv 42 The cross-validation estimate of accuracy.

C 17 Classi�er. A mapping from an unlabelled instance

~x 2 X to a label y 2 Y .
D 17 The distribution on X � Y , the space of labelled

instances.

D 17 The dataset, a set of i.i.d. labelled instances from a

distribution D.

Dom(Xi) 17 The domain of feature Xi.
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Notation Page de�ned Description

I 17 An inducer, or induction algorithm. A mapping from

a dataset D to a classi�er C.
I(D; ~x) 17 (I(D))(~x), i.e., the label assigned to instance ~x by

the classi�er I(D).
m 17 The number of instances in the dataset.

n 17 The number of features in an instance.

X 17 The space of unlabelled instances.

~X 17 An unlabelled instance.

~x 17 The feature values of an unlabelled instance.

Xi 17 A feature i.

xi 17 A value of a feature Xi.

Y 17 The set of possible label values.

Y 17 The label of an instance.

y 17 A label value.
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